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Towards Hierarchical Intent Disentanglement for
Bundle Recommendation

Ding Zou∗, Sen Zhao∗, Wei Wei† , Xian-ling Mao, Ruixuan Li, Dangyang Chen, Rui Fang, and Yuanyuan
Fu

Abstract—Bundle recommendation aims to recommend a bundle of items for the user to purchase together, for which two scenarios
(i.e., Next-bundle recommendation and Within-bundle recommendation) are explored to recommend a specific bundle of items for the
user and a specific item to fill the user’s current bundle, respectively. Previous works largely model the user’s preference with a uniform
intent, without considering the diversity of intents when adopting the items within the bundle. In the real scenario of bundle
recommendation, user intents modeling actually needs to be considered from three hierarchical levels, for that: a user’s intents may be
naturally distributed in different bundles (user level), one bundle may contain multiple intents of a user (bundle level), and an item in
different bundles may also present different user intents (item level). To this end, we develop a novel model, Hierarchical Intent
Disentangle Graph Networks (HIDGN) for bundle recommendation. HIDGN is capable of capturing the diversity of the user’s intent
precisely and comprehensively from the hierarchical structure with an cross-task intent contrastive learning, which is unified with the
supervised next-/within-bundle recommendation sub-tasks as a multi-task framework. Extensive experiments on three benchmark
datasets demonstrate that HIDGN outperforms the state-of-the-art methods by 43.0%, 13.2%, and 73.3%, respectively.

Index Terms—Bundle Recommendation, Disentangled Representation Learning, Contrastive Learning.

✦

1 INTRODUCTION

G ENERALLY, traditional recommender systems [2], [3],
[4], [5], [6], [7], [8], [9], [10] are mainly devoted to

recommending individual items to users. Nevertheless, in
a variety of real-world scenarios such as music or shopping
platforms, providing bundles instead of items could satisfy
user’s interest more comprehensively. Consequently, the
problem of bundle recommendation (BR) [11], [12], [13] has
attracted increasing attention and emerged as an crucial
recommendation scenario.

In terms of the way to construct bundles, existing works
on bundle recommendation could be generally categorized
into two sub-tasks: 1) Next-bundle recommendation, which
recommends the user a pre-built bundle consisting of items
to consume as a whole. 2) Within-bundle recommendation,
which recommends a specific item to fill the user’s current
bundle. And they both have broad applications in real-
world scenarios. For example, Apple Music can recommend
pre-built music lists to the user; Amazon can recommend an
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Fig. 1: An example of the user’s multi-intent pattern for
bundle recommendation.

individual item to put into the user’s shopping cart.
Indeed, there are already lots of researches on these

two distinct sub-tasks of bundle recommendation. For next-
bundle recommendation, existing methods have made a
lot of trials aiming at capturing the user’s preference from
both the bundle itself (i.e., user-bundle interactions) and the
content of the bundle (i.e., bundle-item interactions). Earlier
works [11], [14] simultaneously utilize both the user-bundle
and user-item interactions to model user’s preference for
bundles, and some studies [15] model user-bundle and
user-item interactions jointly under a multi-task framework.
A more recent work [16] further unifies user-bundle-item
affiliations into one heterogeneous graph and utilizes graph
convolution networks (GCN) to learn the user and bundle’s
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representations, capturing user’s preference from the item
associations in bundle-item affiliations. For Within-bundle
recommendation, existing methods make bundle-item pre-
diction based on the user’s preference modeled from the his-
torically user-item interactions and bundle contents. Early
models [17], [18], [19] jointly consider the user-item and
item-item interactions within the bundle to model the user’s
preference and learn bundle/item representation. Follow-on
studies [20], [21] apply GCN to explore the user-bundle-item
graph, aiming to model the ignored heterogeneous high-
order connectivity information.

Despite effectiveness, we argue that current methods
ignore the diversity of the user’s intents in next-/within-
bundle recommendation. DGCF [22] stresses the importance
of intent disentangling, which disentangles user-item inter-
actions according to the user’s intents for the item-based
recommendation. Nevertheless, there exists a more compli-
cated scenario in bundle recommendation, due to the special
user-bundle-item structure which actually contains a hierar-
chical intent structure. To have a thorough analysis of user’s
intent distribution in bundle recommendation, we consider
intents from the following three levels: 1) user-level, a user’s
intents may be naturally distributed in the different bundles;
2) bundle-level, a bundle may satisfy multiple intents of a
user; 3) item-level, an item could be added into different
bundles for satisfying various intents. A common fact is
that all of the three levels are of vital importance for intents
modeling, where the user level treats items as basic units
for user intents and stresses that items in different bundles
could present the same user intent, the bundle level reveals
the item associations under each user intent, and the item
level stresses that not only item associations but also one
single item contain multiple user intents. However, a natural
challenge occurs, for that the two sub-tasks have a dis-
tinct emphasis on the above three-level intent. Next-bundle
recommendation models the possibility between user and
bundle, hence focusing more on user- and item-level intents;
while within-bundle recommendation models the bundle-
item affiliation relation, hence emphasizes bundle- and item-
level more. Consequently, it motivates us to design a hier-
archical intent disentanglement framework for solving both
next- and within-bundle intent modeling problems.

Actually, it’s still non-trial to sufficiently disentangle user
intents for the two distinct bundle recommendation sub-
tasks, for that there are no labels for user intents. Inspired
by the contrastive learning, one successful self-supervised
learning paradigm, which could learn discriminative repre-
sentations from unlabeled data, we propose to incorporate
it into intent modeling for optimizing the intents in a self-
supervised manner. Towards a better intent representation
learning, previous methods [22] consider the independence
between the intents, which is far from enough for effective
intent representations. We hence contrast the learned intents
of user-, bundle-, and item-level across next- and within-
bundle tasks, for supervising intents learning of each level
in a self-supervised manner.

In this paper, we proposed a novel model named
HIDGN (i.e., Hierarchical Intent Disentangle Graph
Networks) to capture the diversity of the user’s intents from
the hierarchical structure with a cross-task intent contrastive
learning. Specifically, we disentangle the representations of

the user, bundle and item into chunks, where each rep-
resents a latent intent. For next-bundle recommendation,
a graph neural network equipped with neighbor routing
mechanism (graph disentangling module) is applied si-
multaneously to disentangle the user-item and the bundle-
item graph, where user-level and bundle-level intents are
disentangled correspondingly. For within-bundle recom-
mendation, the graph disentangling module is applied to
disentangle the user-level and item-level intents with the
user’s preference assisted.

The information from different levels presents user in-
tents from different views, and the three intents learned
from different levels are aligned with each other. To propa-
gate information of intents across different levels, the intent
propagating model is proposed.

Moreover, a cross-task intent contrastive learning is
proposed to facilitate the user-/bundle-/item-level intent
modeling in a self-supervised manner, which contrasts
the disentangled intents of each level across the next-
and within-bundle recommendation tasks. A multi-task
framework is hence formed to unify the supervised next-
/within-bundle recommendation and self-supervised intent
contrastive learning. Extensive experiments conducted on
NetEase, Youshu and Instacart demonstrate that our pro-
posed model HIDGN outperforms the state-of-the-art meth-
ods, such as average relative increases of 43.0%, 17.0%, and
57.8% respectively in terms of Recall@20.

In summary, this work makes the following contribu-
tions:

• We emphasize the importance of disentangling the
user’s intent in two categories of bundle recom-
mendation problems, and explore hierarchical intent
disentanglement under the user-bundle-item hetero-
geneous structure.

• We propose a model named HIDGN, which builds
a multi-task hierarchical intent modeling frame-
work for next- and within-bundle recommendation.
HIDGN develops a hierarchical intent disentangle-
ment module for disentangling the user-/bundle-
/item-level intents. HIDGN then performs intent
contrastive learning across next-/within-bundle sub-
tasks to optimize the intent representation learning
in a self-supervised manner.

• We conduct extensive experiments on three bench-
mark datasets and achieve over 10 percent im-
provement of HIDGN over the state-of-art methods
in both next-bundle recommendation and within-
bundle recommendation.

2 RELATED WORK

2.1 Bundle Recommendation

2.1.1 Next-Bundle Recommendation
Next-bundle recommendation(a.k.a., bundle list recommen-
dation [23], [24]) recommends an existing set of items to
the user for consuming as a whole. Lire [11] simultane-
ously utilizes the user-bundle interactions and user-item
interactions under the Bayesian Personalized Ranking(BPR)
[25] framework, building a linear combination between the
bundle and items. Cao et al. [14] treats bundle and item
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as sentence and word respectively, to capture the bundle-
item co-occurrence information with a word embedding
algorithm. He et al. [26] propose a self-attentive aggrega-
tion layer to capture the user-list-item structure. Chen et
al. [15] develop a deep attentive model under the multi-
task framework for jointly capturing the user’s interactions
with bundles and items. Later works focus on modeling
the long-range connectivity in user-bundle-item interaction
with Graph convolution networks (GCN). Chang et al.
[16] apply GCN to learn user and bundle representations
from the heterogeneous user-bundle-item graph. Li et al.
[27] develop an attention network to capture information
from the object level and bundle level, meanwhile propose
fine- and coarse-grained aggregation network to learn the
user’s preference from the two-level information. However,
previous works ignore the fact that the user’s intents is
diverse when adopting items, which making the learned
user representation only express a coarse-grained preference
of the user.

2.1.2 Within-Bundle Recommendation
The goal of within-bundle recommendation is to recom-
mend a specific item to the user’s current bundle. Early
works [28], [29] model such bundle-item possibility simply
according to historical user-item interactions. For example,
[30], [31] model the travel package recommendation task as
a (linear) knapsack problem and ignore the cross-item depen-
dencies. [32] formalize the curriculum recommendation as
a constraint satisfaction problem and utilize the item-to-item
dependencies as hard-constraints for recommendation. Le
et al. [17] develop a factorization-based method which con-
siders multiple user-item associations. Latter work [13], [33]
applies the skip-gram [34] framework to bundles to capture
the no-linear interactions between bundles and items. Wan
et al. [19] further explore the association of (item, item, user)
triples that are linked by the same bundle and propose a
model named triple2vec to learn representation from such
associations. Recent studies start to capture the high-order
connectivity information for within-bundle recommenda-
tion. BasConv [20] design three types of GCN aggregators
for users, bundles, and items, respectively, which learn the
heterogeneous high-order connectivity information in the
user-bundle-item graph. Liu et al. [21] further explore the
multiple representations of the bundle with a translation-
based model and GNN. However, they are not able to
disentangle the user’s multiple intents within the bundle,
which makes a suboptimal bundle representation learning.

2.2 Disentangled Representation Learning

Disentangled representation learning focuses on identifying
and disentangling underlying factors hidden in the ob-
served data [35]. In graph-structured areas, there are couples
of works to utilize GCN for disentangled representation
learning and explore disentangled GCN networks [36], [36],
[37], [38]. Ma et al. [36] equip GCN with a neighbor routing
mechanism and propose DisenGCN, which is capable of dy-
namically identifying the latent factor that may have caused
the edge between a node and one of its neighbors. Liu et
al. [37] improve DisenGCN by enhancing the independence
of the different parts of the embedded feature. Yang et al.

[38] further consider the multiple relations of the graph
and develop a multi-relation disentanglement for the GCN.
Recently, disentangled representation learning is applied
to item-based recommendation. Wang et al. [22] considers
high-order user-item relationships at the finer granularity
of user’s intents with the neighbor routing mechanism [36].
However, in bundle recommendation, little effort has been
made towards disentangling user/bundle representation
coupled with user’s intents.

2.3 Contrastive Learning
Contrastive Learning [39], [40] optimizes node representa-
tions through contrasting positive pairs against negative
pairs. DGI [40] utilizes Infomax [41] to contrast the node em-
beddings with graph embeddings in graph representation
learning. GMI [42] then contrasts the node with its neigh-
bors in aspects of feature and structure. Latter, MVGRL [43]
contrasts the nodes of two structural graph views, where
node representations are learned from node and graph
levels. And in the item-based recommendation area, SGL
[39] contrasts the original user-item graph with a corrupted
one. SimGCL [44] throughly discusses the effectiveness of
contrastive learning in improving representation uniformity
for recommendation. However, there is little effort to bring
the superiority of contrastive learning into bundle recom-
mendation, especially for the intent modeling.

3 PRELIMINARIES

Here we introduce the problem formulation of next- and
within-bundle recommendations. Let U = {u1, u2, · · · , uM}
be the user set, and B = {b1, b2, · · · , bO} and I =
{i1, i2, · · · , iN} be the associated bundle set and item set,
where M, O, N denote the number of users, bundles and
items. According to the history of bundles user consumed,
we can define the user-bundle interaction matrix, bundle-
item affiliation matrix and user-item interaction matrix as
YM×O = {yub|u ∈ U , b ∈ B}, HO×N = {hbi|b ∈ B, i ∈ I}
and RM×N = {rui|u ∈ U , i ∈ I}, in which yub = 1, hbi = 1
and rui = 1 means user u once interacted bundle b, bundle b
contains item i, and user u once bought item i, respectively.

Basing on the above definition, the task of next-bundle
recommendation is to predict the probability of user u
potentially interacting with a given bundle that the user has
never seen before. Specifically, our goal is to learn a predict
function ŷub = F(u, b|θ,H), where ŷ is the estimation
probability and θ implies the parameters of function F .

Unlike the next-bundle recommendation, within-bundle
recommendation is to fill items i into the user’s bundle b to
maximize the user’s preference over the bundle. Specifically
the goal of within-bundle recommendation is to learn a
predict function ŷbi = F(b, i|u, θ,H), where ŷ is the esti-
mation probability and θ implies the parameters of function
F .

4 HIERARCHICAL INTENT DISENTANGLE GRAPH
NETWORKS

We present the proposed Hierarchical Intent Disentangle
Graph Networks in detail (shown in Figure 2), which com-
prises three main components: 1) Hierarchical graph disen-
tangling module, which first proposes a graph disentangling
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Fig. 2: The framework of the proposed HIDGN, which contains hierarchical graph disentangling module, intent propagat-
ing module, cross-task intent contrasting module and predicting module. (Best view in color)

module and then utilizes it to disentangle the interaction
graph and learn the representations coupled with the user’s
intents from user-level, bundle-level and item-level, respec-
tively. 2) Intent propagating module, which propagates the
user-/bundle-/item-level intent disentangled information
through user-bundle-item graph to acquire sufficient repre-
sentations for next- and within-bundle recommendation. 3)
Cross-task intent contrastive learning, which contrasts the
learned intents of different levels across next- and within-
bundle recommendation sub-tasks, to improve the intent
representation learning in a self-supervised manner.

4.1 Hierarchical Graph Disentangling Module
4.1.1 Graph Disentangling Module
The interactions between users, bundles and items are cou-
pled with diverse intents of users to different degrees. The
graph disentangling module is to disentangle the user’s
intents coupled with the interaction graph and refine the
representation of user/bundle/item under different intents.

Initialization of embeddings and graphs. To obtain
representations under different intents, we divide the user’s
representations as K chunks:

u = (u1,u2, · · · ,uK), (1)

where K is the pre-defined number of the intents and each
chunk uk ∈ R

d
K indicates the user representation the k-

th intent. Analogously, the representation of the bundle
b = (b1,b2, · · · ,bK) and item i = (i1, i2, · · · , iK) are
accordingly build. Each chunk of the representation is in-
dependently initialized.

Each interaction in the interaction graph G associated
to K intents to different degrees. To model the interac-
tions under different intents, we build a set of intent-
aware graphs G = {G1,G2, · · · ,GK}, each of which is
associated with a weighted adjacent matrix Ak. Each en-
try Ak(a, c) of the adjacent matrix indicates the degree
that the interaction between nodes a and c associates to
the k-th intent, where a and c1 are placeholders for the
user, bundle and item. Furthermore, for each interaction

1. a and c are utilized as a uniform place holders for the user u,
bundle b and item i in this paper

within the graph, we construct a score vector A(a, c) =
(A1(a, c),A2(a, c), · · · ,AK(a, c)) that indicates the degrees
that the interaction is associated with the user’s K intents.
The score vector is uniformly initialized as:

A(a, c) = (1, 1, · · · , 1). (2)

Disentangling of the intent-aware graphs. Each chunk
of the representation ak is specialized with an interaction
graph Gk under the same intent. We should disentangle
the interaction graph coupled with the intent and learn the
representation with the intent-aware graph as follows:

e
(1)
ak = g(ak, ck,Ak), (3)

where g(·) indicates the graph disentangling layer and Ak

denotes the adjacent matrix of the interaction graph Gk.
e
(1)
ak is expected to encode the collaborative signal associated

with the k-th intent of the user. The super-index (1) indicates
the first-order graph disentangling layer.

As shown in Figure 2, we employ the neighbour routing
mechanism to iteratively update the adjacent matrix Ak and
chunk of the representation ak under each intent. atk and At

k

are utilized to memorize the intermediate values of ak and
Ak.

Update within each iteration. With the score vector
{At

k(a, c)|∀k ∈ {1, 2, · · · ,K}} for each interaction (a, c),
we calculate its distribution over intents with the softmax
function as:

Ãt
k(a, c) =

expAt
k(a, c)∑K

k′=1expA
t
k′(a, c)

, (4)

which denotes the confidence of the interaction (a, c) under
each intent.

Each chunk of the representation ak is updated by
weighted aggregation over the intent-aware graph Gk under
the same intent:

atk =
∑
c∈Na

Ãt
k(a, c)√

Dk
t (a) ·Dk

t (c)
· ck, (5)

where Dk
t (a) =

∑
c∈Na

Ãt
k(a, c) and Dk

t (c) =
∑

a∈Nc

Ãt
k(a, c)

are degrees of node a and c respectively.
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Then the confidence At
k(a, c) of interaction (a, c) under

each intent is updated through:

At+1
k (a, c) = At

k(a, c) + atk
T · ck, (6)

where the the connection Ak(a, c) between nodes with
similar embedding will be enhanced.

Layer combination. e1ak involve first-order collaborative
signal within the intent-aware graph Gk. To incorporate
higher-order information, more graph disentangling layers
are employed and combined as:

elak = g(el−1
ak , ck,Ak). (7)

eak =
∑
l

elak. (8)

To sum up, the presentation of the node a is disentangled
into chunks ea = (ea1, ea2, · · · , eaK) coupled with the
user’s intents by the graph disentangling module as:

ea = g∗(a, c,A), (9)

where g∗(·) demonstrates the graph disentangling module
formulated from eq. (1) to eq. (8).

4.1.2 Hierarchical Graph Disentangling
The hierarchical graph disentangling module learns the
user’s intents from different levels under the hierarchical
framework (user, bundle, and item levels). From the user
level, the hierarchical graph disentangling module disen-
tangles the user-item interaction graph and learns the user’s
intents distributed in different bundles. From the bundle
level, the hierarchical graph disentangling module learns
the diverse intents of the user within each bundle. And from
the item level, the hierarchical graph disentangling module
learns different intents that each item may satisfy when
been added into different bundles. Specifically, the module
divides the representation of users, bundles and items into
chunks coupling with diverse intents of the user, and learns
the chunks of representation from disentangled interaction
graphs using the graph disentangling module eq. (9) as:

eu = g∗(u, i,A),

eb = g∗(b, i,A),

ei = g∗(i,b,A),

(10)

where eu = (eu1, eu2, · · · , euK) , eb = (eb1, eb2, · · · , ebK)
and ei = (ei1, ei2, · · · , eiK) are couple with the user’s

intents learned from the user, bundle and item levels, re-
spectively.

4.2 Intent Propagating Module
The representations of the user eu, the bundle eb and the
item ei learned from the hierarchical graph disentangling
module are coupled with intents learned from different
levels. To propagate information of intents cross different
levels, intent propagating model is proposed.

4.2.1 Intent Propagating Module for Next-Bundle Recom-
mendation
Intent propagating module for the next-bundle recommen-
dation exchanges information of the user’s intents from the
user level and the bundle level with the graph aggregation
mechanism:

vu =
∑
b∈Nu

1√
|Nu|

√
|Nb|

eb + eu,

vb =
∑
u∈Nb

1√
|Nb|

√
|Nu|

eu + eb.
(11)

The representation vu and vb incorporate information of
intents from the bundle level and the user level, respectively.

4.2.2 Intent Propagating Module for Within-Bundle Recom-
mendation
The intent propagating module propagates the user level
information to both the representation of the item and the
bundle, which can help better learn the user’s preference for
within-bundle recommendation. Since the user first chooses
the item and then adds it into the bundle in the within-
bundle recommendation, the information from the user
level is propagated through the item to the bundle:

hi =
∑
u∈Ni

1√
|Ni|

√
|Nu|

eu + ei,

hb =
∑
i∈Nb

1√
|Nb|

√
|Nu|

hi + eb.
(12)

where hb = (hb1,hb2, · · · ,hbK) and hi =
(hi1,hi2, · · · ,hiK) are representations of the bundle
and item which are coupled with the user’s intents.
Learned from the users within their neighborhood, each
chunk of these representations can present users’ preference
under each intent.
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4.3 Cross-task Intent Contrastive Learning

After disentangling latent intents from user/bundle/item
level in next-/within-bundle recommendation sub-task, a
natural challenge occurs, which is the fact of no labels for
intents. Previous methods usually optimize the intents by
making certain constraints, such as independence between
intents [22]. However, it’s far from enough for hierarchical
intents modeling, for that three-level intents are disentan-
gled independently, which requires the intents of different
levels to align with each other. Recently, contrastive learning
has become a mainstream solution to train without explicit
labels, due to its effective performance in mining labels from
data itself, by minimizing the distance between positive
samples meanwhile maximizing the distance between nega-
tive samples. As a result, a contrastive learning based intent
optimizing module is proposed for a more effective intent
representation learning. It stresses the independence among
intents and aligning intents of hierarchical levels across two
sub-tasks, by contrasting the disentangled bundle represen-
tations hb and vb learned from supervised next- and within-
bundle sub-tasks.

Firstly, a space mapping is performed according previ-
ous contrastive learning methods, with a MLP projection
layer:

hp
b = W (2)σ

(
W (1)hb + b(1)

)
+ b(2),

vp
b = W (2)σ

(
W (1)vb + b(1)

)
+ b(2),

(13)

where σ is the sigmoid function, W (·) ∈ Rd×d and
b(·) ∈ Rd×1 are trainable parameters,. Here the positive
and negative pairs are defined as follows: for an intent in
a certain sub-task (next- or within-bundle recommendation
sub-tasks), the same intent’s representations learned from
two sub-tasks form the positive pairs, while other intent
representations in two sub-tasks are naturally regarded as
negative pairs, which hence include both intra-task and
inter-task negative pairs.

Then the contrastive loss for cross-task intent contrasting
is naturally obtained as follows:

LSSL =

−
O∑

b=1
log e

s(vp
b
,hb

p)/τ

es(v
p
b ,h

p
b)/τ︸ ︷︷ ︸

positive pair

+

∑
k ̸=b

es(v
p
b ,v

p
k)/τ

︸ ︷︷ ︸
intra-task negative pairs

+

∑
k ̸=b

es(v
p
b ,h

p
k)/τ

︸ ︷︷ ︸
inter-task negative pairs

,

(14)
where s(·) is the cosine similarity function, and τ is the
parameter of temperature. In this way, a self-supervised
learning task is introduced into intents modeling and op-
timization.

4.4 Predicting Module

After obtaining the presentation of the user, bundle and item
from hierarchical intent modeling and propagating, we get
the final representations by concatenating, and we estimate
the likelihood of their interactions ŷub and ŷbi through inner
product for next- and within-bundle recommendation, as
follows:

ŷub = (eu ⊕ vu)⊙ (eb ⊕ vb),

ŷbi = (eb ⊕ hb)⊙ (ei ⊕ hi),
(15)

where ⊙ denotes dot product and ⊕ denotes the concatena-
tion.

Towards combining the self-supervised task with the
two supervised bundle recommendation tasks, a unified
multi-task training strategy is hence proposed to optimize
the whole model. For the supervised next- and within-
bundle recommendation, the Bayesian Personalized Rank-
ing loss [45] is employed as:

Ln
pred =

∑
(u,b+,b−)∈Q

− lnσ(ŷub+ − ŷub−) + λ1 · ||θ||2,

Lw
pred =

∑
(b,i+,i−)∈O

− lnσ(ŷbi+ − ŷui−) + λ1 · ||θ||2,
(16)

where Q = {(u, b+, b−)|(u, b+) ∈ y+, (u, b−) ∈ y−},
O = {(b, i+, i−)|(b, i+) ∈ y+, (b, i−) ∈ y−} are training data
for next- and within-bundle recommendation, respectively.
y+ denotes the observed interactions and y− indicates the
sampled negative interactions. L2 regularization controlled
by the coefficient λ1 is applied on the model’s parameter θ
to avoid over-fitting. We combine the intent contrastive loss
with BPR loss and optimize the model by minimizing the
following objective function:

LHIDGN = Ln
pred + Lw

pred + LSSL (17)

5 EXPERIMENTS

Extensive experiments are conducted on three public
datasets to answer the following questions.

• RQ1: Compared to previous approaches, how does
HIDGN perform in next-bundle and within-bundle
recommendation scenarios?

• RQ2: How do different components (e.g., Graph Dis-
entangling Module in the user/bundle/item level,
Cross-task Intent Contrastive Learning module) af-
fect the performance of HIDGN?

• RQ3: How do parameters (layer number of Graph
Disentangling module, intent number) influence the
results of HIDGN?

• RQ4: Can HIDGN provide in-depth analyses of the
disentangled representations?

5.1 Datasets and metrics
As shown in Table 1, we use three datasets to evaluate our
proposed method.

• NetEase: This dataset is provided by the work [14]
and constructed with the logs from Netease Cloud
Music. It contains users’ clicking histories of the user-
generated playlists and individual songs.

• Youshu: It is provided by the work [15] and con-
structed with the logs from a book review site,
Youshu. It contains the users’ interactions with in-
dividual books and bundles of books.

• Instacart: It is published by instacart and is con-
structed with the user’s grocery transaction records
from online grocery shopping.

It’s worth noting that NetEase and Youshu are used for
Next-bundle Recommendation, and Instacart is for Within-
bundle Recommendation.
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Dataset NetEase Youshu Instacart
User 18,528 8,039 1,628

Bundle 22,864 4,771 3,081
Item 123,628 32,770 20,387

User-Bundle 302,303 51,337 3,081
Bundle-item 1,778,838 176,667 180,409

User-item 1,128,065 138,515 180,409
User-bundle density 0.06% 0.13% 0.06%
Bundle-item density 0.06% 0.11% 0.29%

User-item density 0.05% 0.05% 0.54%

TABLE 1: Statistics of three utilized datasets

Next-bundle Recommendation Sub-task For the next-
bundle recommendation sub-task, a method will produce a
top-k bundle recommendation list R for each use. Following
previous bundle recommendation methods [16], [24], we
employ Recall@K and NDCG@K as evaluation metrics. Re-
call@K means the ratio of test bundles/items recommended
within the top-K list. NDCG@K assigns higher scores to the
bundles/items at a higher position on R.

In the formula below, K denotes the implementation of
a top-K ranking. Subsequently, a bundle list B of length K is
systematically generated for each user. bk indicates that the
bundle situated at the k-th position within the generated
bundle list B, and d represents the bundle from bundle set
D with which the user has indeed interacted.

Recall @K =
|D ∩B|
|D|

(18)

DCG@K =
K∑

k=1

2hitk − 1

log2(k + 1)
(19)

where hitk = 1 when bk ∈ D, otherwise hitk = 0.
Within-bundle Recommendation Sub-task For the

within-bundle recommendation sub-task, we also select Re-
call@K and NDCG@K as evaluation metrics to judge the
recommendation list performance. We first compute the
matching scores of all the potential items for the basket b
and then sort items based on the matching scores. Finally,
we evaluate the ranking results by comparing them with the
true items within basket b.

5.2 Baselines
We choose state-of-art methods to compare with our pro-
posed HIDGN. Specifically, two matrix factorization based
methods, and several graph based methods are chosen for
Next-bundle Recommendation.

• MFBPR [46]: This work proposes a matrix factoriza-
tion method under the Bayesian Personalized Rank-
ing learning framework.

• DAM [15]: This work applies the factorized atten-
tion mechanism to capture collaborate signals and
bundle-level associations under the multi-task learn-
ing framework.

• NGCF [47]: This work develops a method with GCN
to capture high-order connectivity information for
prediction.

• NGCF-UB [47]: The NGCF method is applied to the
user-bundle graph.

• RGCN [48]: RGCN is a method based on GCN which
is developed for the multi-relational graph.

• BundleNet [49]: it builds a user-bundle-item tripar-
tite graph, leverages GCN and applies multi-task
learning to learn the representations.

• BGCN [16]: BGCN is a graph based model proposed
to explicitly model the complex relations within the
user-bundle-item graph.

• BRUCE [50]: it introduces transformer into bundle
recommendation, capturing the context of each item
in the bundle.

For within-bundle recommendation, we also apply MF-
BPR, NGCF, RGCN to the within-bundle recommendation.
Except for these three baselines, we also compare with the
following methods:

• NGCF-BI [47]: The NGCF is applied on the bundle-
item graph to predict the interactions between bun-
dles and items.

• BasConv [20]: This work devises heterogeneous ag-
gregators to learn the embedding of each kind of
nodes within the graph between users, bundles and
items.

• MITGNN [16]: MITGNN combines the graph neural
network with a translation-based model to consider
the multiple intents within a basket.

Parameter Settings For HIDGN, the embedding size is
set to 64, the number of layers and the number of intents are
selected from {1, 2, 3, 4} and {1, 2, 4, 8}, respectively. In the
training procedure, the negative sampling rate is set to 1,
and the learning rate is selected from {1e-5, 3e-5, 1e-4, 3e-4,
1e-3, 3e-3}. The batch size is 4096 and BPR loss is adopted
with the Adam optimizer. Our experiments are conducted
on a Nvidia RTX 3090 graphics card equipped with AMD
r9-5900x CPU.

5.3 Performance Comparison(RQ1)

From the experiment results of next-bundle recommenda-
tion (reported in Table 2), we have following observations.

• Our proposed HIDGN achieves the best results.
Specifically, HIDGN improves the performance over
the best baseline by 43.0% and 37.2% in terms of
Recall@20 and NDCG@20 on NetEase. And HIDGN
outperforms the best result by 13.2% and 11.1%
in terms of Recall@20 and NDCG@20 on Youshu.
We attribute the improvements to the following
aspects: 1) By disentangling the embedding of
user/bundle/item according to the user’s intents in
a hierarchical structure, HIDGN learns user/bundle
representation at a more granular level. 2) By con-
trasting the intents of different sub-tasks, the uni-
fied multi-task framework learns more discrimina-
tive bundle embeddings coupled with intents.

• Graph models achieve better performance in next-
bundle recommendation. Graph models (NGCF,
RGCN) achieve better performance than MFBPR,
which can be attributed to their superiority in cap-
turing graph structure and high-order connectivity
information.
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Method
NetEase Youshu

Metrics@20 Metrics@40 Metrics@80 Metrics@20 Metrics@40 Metrics@80
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

MFBPR 0.0335 0.0181 0.0600 0.0246 0.0948 0.0323 0.1959 0.1117 0.2735 0.1320 0.3710 0.1543
DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658
NGCF 0.0384 0.0198 0.0636 0.0266 0.1015 0.0350 0.2119 0.1165 0.2761 0.1343 0.3743 0.1561

NGCF-UB 0.0395 0.0207 0.0646 0.0274 0.1021 0.0359 0.1985 0.1143 0.2658 0.1324 0.3542 0.1524
RGCN 0.0407 0.0210 0.0670 0.0280 0.1112 0.0378 0.2040 0.1069 0.3017 0.1330 0.4169 0.1595

BundleNet 0.0391 0.0201 0.0661 0.0271 0.1141 0.0369 0.1895 0.1125 0.2675 0.1335 0.3988 0.1548
BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851
BRUCE 0.0489 0.0251 0.0821 0.339 0.1287 0.0425 0.2425 0.1428 0.3412 0.1696 0.4621 0.1974

MIDGN 0.0678 0.0343 0.1085 0.0451 0.1654 0.0578 0.2682 0.1527 0.3712 0.1808 0.4817 0.2063
HIDGN 0.0702* 0.0353* 0.1117* 0.0464* 0.1699* 0.0594* 0.2746* 0.1586* 0.3836* 0.1880* 0.4972* 0.2144*
%Improv. 43.0% 37.2% 34.8% 34.2% 30.3% 31.3% 13.2% 11.1% 12.4% 10.8% 7.6% 8.6%

TABLE 2: Performance comparisons on two real-world datasets. * denotes the statistical significance for p < 0.001 based
on a two-tailed paired t-test.

• It is important to capture the user’s preference on
both user and bundle levels. Neglecting the bundle-
level associations, graph models (NGCF, RGCN) is
surpassed by DAM, a method unifying user- and
bundle-level information under the multi-task frame-
work. Besides, BGCN significantly improve the per-
formance by learning the bundle-level associations
with GCN and performs the best among baselines.

From experimental results of within-bundle recommen-
dation reported in Table 3, we have following observations.

• Our proposed HIDGN achieves the best results.
On Instacart, HIDGN achieves improvement over
the best baseline by 57.8% and 50.3% in terms of
Recall@20 and NDCG@20. We attribute the improve-
ments to the following aspects: 1) By disentangling
hierarchical intents from three levels, HIDGN makes
bundle-item prediction from a more granular level.
2) Through intent contrasting with next-bundle rec-
ommendation sub-task, intent modeling of the two
sub-tasks gets improvement.

• Graph models perform better for within-bundle
recommendation. Similar to the next-bundle recom-
mendation, graph models (NGCF, RGCN, BasConv)
achieve better performance, which is mainly at-
tributed to the great superiority of GNN in capturing
graph structure and high-order neighboring informa-
tion. This fact motivates us to design a proper GNN
mechanism for within-bundle recommendation.

• Explicitly considering multiple user intents is ef-
fective in within-bundle recommendation. Ignoring
the effectiveness of user’s intents, most of the graph
models fail to surpass MITGNN, which simply trans-
fers bundle representation into multi embeddings as
intents. But MITGNN performs worse than BasConv
in a few scenarios, which motivates us to disentangle
user’s intents more precisely.

5.4 Study of HIDGN (RQ2&RQ3)
5.4.1 Ablation Study (RQ2)
We investigate the underlining mechanism of our HIDGN
for both next-bundle recommendation and within-bundle
recommendation, with the following three ablated models:

Method
Instacart

Metrics@20 Metrics@40 Metrics@80
Recall NDCG Recall NDCG Recall NDCG

MFBPR 0.0289 0.0253 0.0506 0.0353 0.0849 0.0487
NGCF 0.0329 0.0283 0.0571 0.0395 0.0963 0.0549

NGCF-BI 0.0471 0.0432 0.0727 0.0552 0.1072 0.0687
RGCN 0.0250 0.0226 0.0415 0.0303 0.0704 0.0416

BasConv 0.0491 0.0463 0.0872 0.0592 0.1502 0.0887
MITGNN 0.0465 0.0423 0.0892 0.0615 0.1675 0.0975
HIDGN 0.0851* 0.0744* 0.1360* 0.0982* 0.2132* 0.1284*
%Improv. 73.3% 60.7% 52.5% 59.7% 27.3% 31.7%

TABLE 3: Performance comparisons on Instacart for Within-
bundle recommendation. * denotes the statistical signifi-
cance for p < 0.001 based on a two-tailed paired t-test.

Method
NetEase Youshu

Metrics@20 Metrics@20
Recall NDCG Recall NDCG

HIDGNw / o user 0.0547 0.0287 0.2475 0.1393
HDGNw / o bundle 0.0583 0.0303 0.2464 0.1441
HIDGNw / o item 0.0609 0.0312 0.2588 0.1471
HIDGNw / o contra 0.0683 0.0345 0.2706 0.1548
HIDGN 0.0702 0.0353 0.2746 0.1586

TABLE 4: Ablated models analysis for next-bundle recom-
mendation.

• HIDGNw / o user : We replace the graph disentan-
gling module in the user level with GCN for both
next- and within-bundle recommendation.

• HIDGNw / o bundle : We remove the graph disentan-
gling module in the bundle level and uses GCN
instead for both next- and within-bundle recommen-
dation.

• HIDGNw / o item : We remove the graph disentan-
gling module in the item level and uses GCN instead
for both next- and within-bundle recommendation.

• HIDGNw / o contra : We remove cross-task intent con-
trastive learning for both next- and within-bundle
recommendation.

From results in Table 4 and Table 5, we have the following
observations for next- and within-bundle recommendation:
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Method
Instacart

Metrics@20 Metrics@40
Recall NDCG Recall NDCG

HIDGNw / o user 0.0742 0.0672 0.1148 0.0864
HIDGNw / o bundle 0.0688 0.0627 0.1112 0.0825
HIDGNw / o item 0.0603 0.0546 0.0969 0.0717
HIDGNw / o contra 0.0724 0.0653 0.1179 0.0866
HIDGN 0.0851 0.0744 0.1360 0.0982

TABLE 5: Ablated models analysis for within-bundle
recommedation.

• HIDGN outperforms the model that ablates intent
disentanglement from any level. This demonstrates
the importance of the hierarchical structure in mod-
eling the user’s multiple intents, where the user level
stresses that items in different bundles could present
the same user intent, the bundle level reveals the item
associations under each user intent, and the item
level stresses that not only item associations but also
one single item contain multiple user intents.

• HIDGNw / o user performs the worst for next-bundle
recommendation, while HIDGNw / o item performs
worst for within-bundle recommendation. This
demonstrates that intent disentanglement from var-
ious levels have different importance for next- and
within- bundle recommendation. Next-bundle rec-
ommendation focuses more on user-level and item-
level intents; while within-bundle recommendation
emphasises bundle-level and item-level intents.

• HIDGN outperforms HIDGNw / o contra. in both
next- and within-bundle recommendation. This fact
demonstrates the effectiveness of the cross-task in-
tent contrasting module in help optimize the intent
modeling in a self-supervised manner.

• All the ablated models significantly outperform the
baselines in all of the situations. This demonstrates
the effectiveness of hierarchical intent disentangle
graph networks for bundle recommendation.

5.4.2 Parameter Study (RQ3)
We further conduct parameter studies to investigate how
the parameters (i.e., the layer number of hierarchical graph
disentangling module, the intent number of the user) influ-
ence the HIDGN’s performance in next- and within-bundle
recommendation sub-tasks.

Impact of Layer Number. The hierarchical graph dis-
entangling module disentangles user intents coupled with
the interaction graph and refine the representation of
user/bundle/item under different intents. High-order con-
nectivity information is distilled with more layers. To in-
vestigate how the layer number influences HIDGN’s per-
formance, we conduct experiments with layer L varying in
range of {1, 2, 3, 4} for next- and bundle recommendation,
where HIDGN-L is to indicate L layers in the hierarchical
graph disentangling module. From the results shown in
Table 6 and Table 7, We have some observations:

• In both next- and within-bundle recommendation
sub-tasks, increasing the layer number boosts the

Method-L
NetEase Youshu

Metrics@20 Metrics@20
Recall NDCG Recall NDCG

HIDGN-1 0.0442 0.0233 0.2348 0.1348
HIDGN-2 0.0559 0.0295 0.2503 0.1429
HIDGN-3 0.0642 0.0331 0.2746 0.1586
HIDGN-4 0.0702 0.0353 0.2617 0.1472

TABLE 6: Impact of Layer Number(L) for next-bundle rec-
ommendation.

performance of HIDGN. HIDGN-1 performs the
worst, which is mainly because HIDGN-1 only gains
information from one-hop neighbors and neglects
high-order collaborative information.

• The performance does not always improve with the
improvement of the layer number. HIDGN-3 outper-
forms HIDGN-4 on Youshu. We attribute this to the
noise increasing along with the hop of neighbors.

Method-L
Instacart

Metrics@20 Metrics@40
Recall NDCG Recall NDCG

HIDGN-1 0.0657 0.0599 0.1059 0.0787
HIDGN-2 0.0703 0.0634 0.1141 0.0839
HIDGN-3 0.0752 0.0679 0.1211 0.0894
HIDGN-4 0.0851 0.0744 0.1360 0.0982

TABLE 7: Impact of Layer number(L) for within-bundle
recommendation.

Impact of Intent Number. To investigate how the intent
number influence the HIDGN’s performance, we conduct
experiments with the Intent number K in range {1, 2, 4, 8}.
From the results shown in Fig. 5 and Fig. 6, we have the
following observations:

• In both next- and within-bundle recommendation,
increasing the intent number properly promotes the
model performance, which presumes the importance
of user’s multiple intents for next-bundle recommen-
dation and within-bundle recommendation.

• In next-bundle recommendation, HIDGN with the
intent number K = 1 performs the worst, which
illustrates the fact that the user’s intents are diverse
and can not be presented by a unitary presentation.

• With the increasing of intent number K from 4 to 8,
the performance of HIDGN drops sharply in two rec-
ommendation sub-tasks. And especially in within-
bundle recommendation, HIDGN gets the worst per-
formance when K = 8. This fact suggests the model
actually suffers from too fine-grained intents.

5.5 Visualization (RQ4)
Visualization of Item Embedding. To further verify
whether HIDGN has disentangled the user’s intents under
hierarchical structure, we perform the t-SNE visualization,
as shown in Figure 7. In Figure 7, three users in Instacart are
randomly chosen and the representations of their interacted
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Bundle 1390423b

Mini Original Babybel Cheese
Vanilla Pure Almond Milk
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Cream Top Yogurt
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Organic Whole Milk

Lemon Verbena Dish Soap
Geranium Liquid Dish Soap

Honeysuckle Hand Soap
Lavender Dish Soap
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Clean Day Basil Hand Soap
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Lemon Verbena Hand Soap
Olive Oil & Aloe Vera Hand Soap
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Sparkling Water Grapefruit

Strawberries
Pomegranate

Organic Gala Apples
Honeycrisp Apple

Sparkling Natural Mineral Water
Lime Sparkling Water
Pure Sparkling Water

Sparkling Lemon Water

Diary Cleaning Fruits Water

Fig. 4: Case study of the intent distribution within the bundle. (Best view in color)
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Fig. 5: Impact of Intent Number(K) for next-bundle recom-
mendation.
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Fig. 6: Impact of Intent Number(K) for within-bundle rec-
ommendation.

items are presented with different colors to illustrate the
user’s multiple intents. The distribution of items under
different intents are well clustered. This gives an intuitive
visualization of the user’s diverse intents and the effective-
ness of our model in disentangling the user’s intents.

Case Study. We further verify whether the intents dis-
entangled by the HIDGN has meaning in the real-word sce-
narios as shown in Figure 4. We randomly select one bundle
from Instacart and present names of items under different
intents with different colors. From the figure, the intent
within the bundle is disentangled into: ”dairy”, ”cleaning”,
”fruits” and ”water”. This proves that the intents disentan-
gled by HIDGN are meaningful in the real-word scenarios.

6 CONCLUSION

In this paper, we explore hierarchical intent disentanglement
in the problem of personalized bundle recommendation

(a) user 2335u (b) user 97899u (c) user 143442u
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Fig. 7: t-SNE visualization of items bought by a user. Differ-
ent colors present different intents. (Best view in color)

which contains two sub-tasks: next-bundle recommendation
and within-bundle recommendation. We propose a novel
model named HIDGN (i.e., Hierarchical Intent Disentangle
Graph Networks), which is capable of precisely and com-
prehensively capturing the diversity of the user’s intent
from hierarchical structure for next- and within-bundle rec-
ommendation. Specifically, 1) HIDGN disentangles user in-
tents from user/bundle/item level and learns disentangled
representations; 2) HIDGN contrasts the intents of differ-
ent levels across next- and within-bundle recommendation
sub-tasks, and hence optimizes the intent modeling in a
self-supervised manner. A multi-task framework is further
formed to unify the supervised next-bundle and within-
bundle recommendation sub-tasks with self-supervised in-
tent contrastive learning. Extensive experiments on Youshu,
NetEase, and Instacart demonstrate the superiority of the
proposed HIDGN.
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