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Abstract
Conversational recommendation systems (CRS)1

aim to timely and proactively acquire user dynamic2

preferred attributes through conversations for item3

recommendation. In each turn of CRS, there natu-4

rally have two decision-making processes with dif-5

ferent roles that influence each other: 1) director,6

which is to select the follow-up option (i.e., ask or7

recommend) that is more effective for reducing the8

action space and acquiring user preferences; and9

2) actor, which is to accordingly choose primitive10

actions (i.e., asked attribute or recommended item)11

that satisfy user preferences and give feedback12

to estimate the effectiveness of the director’s op-13

tion. However, existing methods heavily rely on a14

unified decision-making module or heuristic rules,15

while neglecting to distinguish the roles of differ-16

ent decision procedures, as well as the mutual in-17

fluences between them. To address this, we propose18

a novel Director-Actor Hierarchical Conversational19

Recommender (DAHCR), where the director se-20

lects the most effective option, followed by the ac-21

tor accordingly choosing primitive actions that sat-22

isfy user preferences. Specifically, we develop a23

dynamic hypergraph to model user preferences and24

introduce an intrinsic motivation to train from weak25

supervision over the director. Finally, to alleviate26

the bad effect of model bias on the mutual influence27

between the director and actor, we model the di-28

rector’s option by sampling from a categorical dis-29

tribution. Extensive experiments demonstrate that30

DAHCR outperforms state-of-the-art methods.31

1 Introduction32

Conversational recommendation systems (CRS) aim to dy-33

namically learn the user’s preferences by iteratively interact-34

ing with the user. Existing works have explored various set-35

tings of conversational recommendation from the perspective36
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Figure 1: Illustration of policy learning frameworks for CRS, includ-
ing a framework of the outsourcing strategy (SCPR), a framework of
the unified strategy (Unicorn), and our proposed DAHCR with the
Director-Actor framework.

of either dialogue systems [Li et al., 2018] or recommen- 37

dation systems [Lei et al., 2018]. In this work, we focus 38

on the setting of multi-round conversational recommendation 39

(MCR) [Sun and Zhang, 2018], which aims to recommend 40

the target item to the user by iteratively asking attributes and 41

recommending items in the limited turns. 42

For each turn in CRS, the system naturally includes two 43

essential decision-make procedures, when to recommend 44

(i.e., ask or recommend), and what to talk about (i.e., the 45

specific attribute/items). Early works [Lei et al., 2020a; 46

Sun and Zhang, 2018] develop policy learning for a subset 47

of decision procedures and outsource the other procedures to 48

heuristic rules (SCPR as illustrated in Figure 1 (a)). These 49

works isolate strategies for different decisions and make pol- 50

icy learning hard to converge due to their lack of mutual 51

influence during training. To solve this problem, Deng et 52

al. [2021] and Zhang et al. [2022] develop unified policy 53

learning frameworks (Unicorn as illustrated in Figure 1 (b)) 54

which unify the aforementioned two separated decision-make 55

processes as a selection from the action space consisting of 56

items and attributes. Despite effectiveness, the unified strat- 57

egy brings out issues to be solved: (i) The unified strategy 58

complicates the action selection of the CRS strategy by en- 59

larging the action space and introducing data bias into the 60

action space due to the imbalance in the number of items and 61

attributes. As illustrated in Figure 1 (b), the action space is 62

enlarged with all the items and attributes, and the strategy will 63

prefer to select items when the number of items is larger. (ii) 64



The unified strategy ignores the different roles of the two de-65

cision procedures, leading to the sub-optimal CRS strategy.66

In the real scenario of CRS, the two decision procedures67

have different roles which are mutually influenced. As il-68

lustrated in Figure 1 (c), the decision procedure of when to69

recommend works as a director, which should select the op-70

tion (i.e., ask or recommend) that is more effective for re-71

ducing the action space and acquiring user preferences (e.g.,72

avoid recommending when the user’s preference is not cer-73

tain enough) to guide the latter procedure. The latter proce-74

dure works as an actor, which should accordingly choose the75

primitive action (i.e., the specific attribute/items) that satisfies76

the user’s preference and gives feedback to evaluate the effec-77

tiveness of the director’s option. The director’s option limits78

the actor’s action space to either attributes or items, which re-79

duces the action space and avoids the data bias introduced by80

the imbalance in the number of items and attributes.81

There remain three challenges in modeling these two roles82

and their mutual influence. The first challenge is weak super-83

vision. The extrinsic rewards from the environment in each84

turn estimate the user’s preference for the actor’s primitive85

actions, but fail to estimate the effectiveness of the director’s86

option, which is weakly supervised by the final-turn result87

(i.e., success or failure). The second challenge is user prefer-88

ence modeling. In the scenario of CRS, the user likes/dislikes89

items since they satisfy some attributes, which is a three-order90

relation (i.e., user-attribute-item). To specify the attributes91

that motivate the user to like/dislike the item, we should92

model user preferences with such high-order relations. The93

third challenge is the bad effect of model bias [Battaglia et94

al., 2018; Tarvainen and Valpola, 2017] on the mutual influ-95

ence between director and actor. Specifically, the director’s96

bias may lead to bad options that will filter out more efficient97

actions for the actor. And the actor’s bias can result in false98

feedback that will disturb the convergence of the director.99

To overcome the aforementioned challenges, we propose100

a Director-Actor Hierarchical Conversational Recommender101

(DAHCR) with the director to select the option (i.e., ask102

or recommend) that is more effective for reducing the ac-103

tion space and acquiring user preferences, followed by the104

actor accordingly choosing primitive actions (i.e., specific105

items/attributes) that satisfy user preferences. To train from106

weak supervision over the director’s option effectiveness, we107

develop and introduce an intrinsic motivation (i.e., the actor’s108

feedback) [Chentanez et al., 2004] into our Director-Actor109

framework to estimate the effectiveness of the director’s op-110

tions. Furthermore, to model user preferences, we develop a111

dynamic hypergraph [Feng et al., 2019] with each high-order112

relation (i.e., user-attribute-item) specifying an attribute that113

motivates the user to like/dislike the item. Finally, to allevi-114

ate the bad effect of the model bias in the mutual influence,115

we model the director’s option by sampling from a categori-116

cal distribution with Gumbel-softmax [Pei et al., 2022]. Ex-117

tensive experiments on two real-world datasets show that our118

method can outperform the state-of-the-art methods.119

In a nutshell, this work makes the following contributions:120

• We emphasize the roles of the Director and Actor in the121

two decision procedures for CRS, and the mutual influ-122

ence between them.123

• We propose a novel Director-Actor Hierarchical conver- 124

sational recommender with intrinsic motivation to train 125

from weak supervision and a dynamic hypergraph to 126

learn user preferences from high-order relations. To al- 127

leviate the bad effect of model bias on the mutual in- 128

fluence between director and actor, DAHCR models the 129

director’s options by sampling from a categorical distri- 130

bution with Gumbel-softmax. 131

• We conduct extensive experiments on two benchmark 132

datasets, and DAHCR effectively improves the perfor- 133

mance of conversational recommendation. 134

2 Related Work 135

Different from traditional recommendation systems [Zhao et 136

al., 2022; Wang et al., 2022] that predict the user’s preference 137

based on his/her historical behaviors, conversational recom- 138

mendation systems (CRS) [Priyogi, 2019; Xie et al., 2021; 139

Zhou et al., 2020] aim to communicate with the user and rec- 140

ommend items based on the attributes explicitly asked dur- 141

ing the conversation. Various efforts have been conducted 142

to explore the challenges in CRS which can mainly be cat- 143

egorized into two tasks: dialogue-biased CRS studies the 144

dialogue understanding and generation [Chen et al., 2019; 145

Kang et al., 2020; Liu et al., 2020], and recommendation- 146

biased CRS explores the strategy to consult and recommend 147

[Christakopoulou et al., 2016; Christakopoulou et al., 2018; 148

Sun and Zhang, 2018; Lei et al., 2020a]. This work focuses 149

on the multi-round recommendation-biased CRS (MCR) [Lei 150

et al., 2020a] which focuses on the setting where the MCR 151

aims to recommend the target item to the user by iteratively 152

asking attributes and recommending items in limited turns. 153

For each turn in CRS, the system naturally includes two 154

make-decision procedures, when to recommend (i.e., ask or 155

recommend), and what to talk about (i.e., which attribute/item 156

to inquire/recommend). Early works for the MCR improve 157

the strategies of when and what attributes to ask, while the 158

decision of which item to recommend is made by external 159

heuristic rules. EAR [Lei et al., 2020a] utilizes latent vec- 160

tors to capture the current state of MCR, and employs pol- 161

icy gradient to improve the strategy of deciding when to ask 162

questions about attributes and which attribute to ask. To re- 163

duce the action space in policy learning, SCPR [Lei et al., 164

2020b] improves the strategy to only decide whether to ask 165

or recommend and develops external path reasoning meth- 166

ods to decide which attribute to ask or which item to rec- 167

ommend. These works, however, isolate strategies for dif- 168

ferent problems and make the policy learning of these strate- 169

gies hard to converge. To solve this problem, Unicorn [Deng 170

et al., 2021] unifies the two decision procedures as the se- 171

lection from the candidate action space consisting of items 172

and attributes. Specifically, Unicorn proposes a graph-based 173

Markov Decision Process (MDP) environment to choose ac- 174

tions from the candidate action space. MCMIPL [Zhang et 175

al., 2022] further considers the user’s multiple interests in the 176

unified strategy and develops a multi-interest policy learning 177

module. Despite effectiveness, these works ignore the vari- 178

ant roles of different decision procedures, which may lead to 179

sub-optimal CRS strategies. 180



3 The Proposed Model181

We first introduce the problem definition of multi-turn con-182

versational recommendation (MCR). Next, we introduce the183

framework and the model of our proposed Director-Actor Hi-184

erarchical Conversational Recommender (DAHCR).185

3.1 Problem Formulation186

In this section, we formulate the problem of multi-turn con-187

versational recommendation (MCR), which aims to recom-188

mend the target item to the user by asking attributes and rec-189

ommending items in the limited turns of the conversation.190

Specifically, let V = {v1, v2, · · · , vM} denotes the item191

set. For each item v, there exists an attribute set Pv associated192

with the item. At the beginning of each conversation, a user u193

initializes the conversation session with a target item v∗ and194

an attribute that belongs to the target item p0 ∈ Pv∗ . The195

candidate item set Vcand is formed with the items associated196

with p0 and the candidate attribute set Pcand is constructed by197

the attributes associated with the items in the candidate item198

set Vcand. Then at each turn t, MCR can either ask the user an199

attribute pt ∈ Pcand or recommend a certain number of items200

(e.g., the top ten items) Vt ⊆ Vcand to the user. According201

to the target item v∗ and its associated attributes Pv∗ , the user202

will choose to accept or reject the proposal of MCR. Based on203

the user’s feedback, MCR will update the candidate attribute204

set Pcand and the candidate item set Vcand. The conversation205

will continue until the max turn T and the recommendation is206

successful if the target item v∗ is recommended within T .207

3.2 DAHCR Framework208

As illustrated in Figure 1 (c), we propose the Director-Actor209

hierarchical conversational recommendation policy Learning,210

a novel framework for MCR. At each time step t, the direc-211

tor chooses an option ot ∈ O, and the actor chooses the212

primitive action at ∈ At|ot accordingly. Consequently, the213

state is updated to st+1 with the transition T (st+1|st, ot, at).214

The user’s feedback ft ∈ {acc, rej}, the extrinsic reward215

rat ∈ Ra, and intrinsic motivation rot ∈ Ro are given accord-216

ing to st, ot and at. Specifically, the main components of217

DAHCR ⟨S,O,A, T,Ro,Ra⟩ are defined as:218

State S. The current state contains three components, in-219

cluding the interactive history It, the related nodes N t, and220

the hypergraph Gt among the user and related nodes:221

st = [It,N t,Gt], (1)

where It = [(a1j , fj)|j = 1, 2 · · · t − 1]. The related nodes222

N t = {u} ∪ P t
acc ∪ P t

rej ∪ V t
rej ∪ V t

cand contains the user u,223

the accepted attributes P t
acc, the rejected attributes P t

rej , the224

rejected items V t
rej , and the candidate items V t

cand.225

Options O. Based on the state st of the current turn,226

the director should choose an option ot ∈ O, where O =227

{ask, rec} denotes whether to ask or recommend.228

Primitive Actions A. Based on the director’s option ot and229

the state st, the actor selects the primitive action at ∈ At|ot ,230

where At|ask = P t
cand is the candidate attributes to ask and231

At|rec = V t
cand means the candidate items to recommend.232

Transitions T . Follows previous works [Lei et al., 2020b; 233

Deng et al., 2021], the state st+1 updates based on the user’s 234

response: 235
P t+1
acc = P t

acc ∪ at, if ot = ask, ft = acc

P t+1
rej = P t

rej ∪ at, if at = ask, ft = rej

V t+1
rej = V t

rej ∪ at, if at = rec, ft = rej

, (2)

236

V t
cand = VP t

acc
\V t

rej , P
t
cand = PV t

cand
\ (P t

acc ∪P t
rej), (3)

where VP t
acc

denotes the items that satisfy all the accepted 237

attributes and PV t
cand

denotes all the attributes that belong to 238

the candidate items. Follows Lei et al. [2020b], items that 239

have rejected attributes are not eliminated from V t
cand. 240

Extrinsic Rewards Ra. Extrinsic rewards are special sig- 241

nals passed from the environment to the agent, and guide 242

the agent to select user-preferred actions. Five kinds of re- 243

wards are designed as previous works [Lei et al., 2020b; 244

Deng et al., 2021]: (1) raacc|rec, a strongly positive reward 245

when recommend successfully; (2) rarej|rec, a slightly neg- 246

ative reward when the recommended items are rejected; (3) 247

raacc|ask, a slightly positive reward when the asked attribute 248

is accepted; (4) rarej|ask, a slightly negative reward when the 249

asked attribute is rejected; (5) raquit, a strong negative reward 250

when the maximum turn reaches. 251

Intrinsic Motivation Ro. The intrinsic motivation is 252

passed from the actor to the director to estimate the effective- 253

ness of the director’s option. Since recommending is an inef- 254

ficient action when the user’s preference is not certain enough 255

(i.e., the target item is outside the top ten in the actor’s rank- 256

ing list of items), we assign a positive reward ro+ to the option 257

of ask and a negative reward ro− to the option of rec in this 258

situation. Inversely, when the user’s preference is certain, ro+ 259

and ro− are assigned to the option of rec and ask, respectively. 260

3.3 DAHCR Policy Learning 261

State encoder. The interactive history It = [(oj , fj)|j ∈ 262

{1, 2 · · · t − 1}] between DAHCR and the user contains the 263

director’s historical options oj and the user’s feedback of ac- 264

cepting or rejecting fj ∈ {acc, rej}. With the embedding of 265

the interactive history {X1
h,X

2
h, · · · ,X

t−1
h }, the interactive 266

state sth is obtained with GRU networks [Cho et al., 2014]: 267

sth = GRU(st−1
h ,Xt−1

h ). (4)

The interactive state sth encodes the historical interaction 268

between the agent and the user, and is excepted to guide 269

DAHCR to learn CRS strategy to decide whether the user’s 270

preference is certain enough (e.g., the recommended attribute 271

is accepted for several turns) for recommending items. 272

To learn the user’s preference for the specific attributes 273

and items, we build a dynamic hypergraph G(t)
u = 274

(N (t),H(t),A(t)), including: (1) the set of related nodes 275

N t = {u} ∪ P t
acc ∪ P t

rej ∪ V t
rej ∪ V t

cand; (2) a hyperedge 276

set H(t), whose element h ∈ H(t) denotes a hyperedge be- 277

tween the user, an attribute and items. In our case, for each 278

attribute p ∈ N (t), we define a hyperedge hp corresponding 279

to the attribute p; (3) a |N (t)| × |H(t)| adjacent matrix A(t) 280
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Figure 2: The overview of Director-Actor Hierarchical Conversational Recommender (Best view in color).

which denotes the weighted edge between each node and hy-281

peredge, with entries denoted as:282

A
(t)
i,j =



1, if ni = u, phj
∈ P(t)

acc

−1, if ni = u, phj
∈ P(t)

rej
1

|V(t)
hj

|
, if ni ∈ V(t)

hj

1, if ni = phj

0, otherwise

, (5)

where phj
denotes the attribute corresponding to the hyper-283

edge hj , and V(t)
hj

indicates items that satisfy the attribute phj
.284

To take advantage of the connectivity information from the285

dynamic hypergraph, we employ hypergraph neural networks286

[Xia et al., 2022] to refine the node representation with struc-287

ture and connectivity information. Firstly, we aggregate in-288

formation propagated from nodes to related hyperedges:289

H = D−1
h ATEWn, (6)

where E ∈ R|N (t)|×d denotes the initial embedding of related290

nodes N (t), Wn ∈ Rd×d is the weight matrix, and Dh is the291

diagonal matrix denoting the degree of the hyperedges, which292

is defined as the number of nodes connected by hyperedges.293

During the conversation, the hyperedges are successively294

generated when the user accepts or rejects the asked attribute.295

Moreover, the higher-level interactions between different hy-296

peredges are also important in learning user preferences. To297

model the sequential information and hyperedge-wise feature298

interactions, higher-level hypergraph layers further pass mes-299

sages through the interactions between hyperedges as:300

H l
f = MHSAf (H

l−1
f ,H l−1

f ,H l−1
f ), (7)

where f ∈ {acc, rej}, and MHSA(·) indicates the multi-301

head self attention [Vaswani et al., 2017]. Finally, we aggre-302

gate the information from the hyperedges to refine the nodes’303

representations Γl and then obtain the connectivity state stg:304

stg =
∑
l

Γl(u),Γl = ReLU(A ·H l). (8)

With the interactive state sth and the connectivity state stg , 305

the final state is obtained by: 306

st = sth ⊕ stg ⊕ stlen, (9)

where ni denotes the node in the hypergraph, stlen encodes 307

the size of the candidate item and attribute set by dividing the 308

length |Vcand| and |Pcand| into ten-digit binary features [Lei 309

et al., 2020a], since it is also an important basis for deciding 310

to ask or recommend (e.g., the recommendation is easier to 311

be successful when the candidate items’ size is small). 312

Hierarchical Action Selection Strategy. After obtaining 313

the state encoding the interactive history and the user’s prefer- 314

ence, we design a novel dueling Q-network to conduct policy 315

learning under the hierarchical structure. Following the basic 316

assumption that the delayed rewards are discounted by a fac- 317

tor of γ, we define the Q-value Qo(st, ot) and Qa(st, at) as 318

the expected reward for the director’s option ot and the actor’s 319

action at based on the state st: 320

Qo(st, ot) = fo
θV (st) + fo

θA(st, ot), (10)
321

Qa(st, at|ot) = P ∗(st, ot)(f
a
θV (st) + fa

θA(st, at)), (11)

where the value function fo
θV

(·) fa
θV

(·), and the advantage 322

function fo
θA
(·) fa

θA
(·) are four separate multi-layer percep- 323

tions (MLP). P ∗(st, ot) controls the action space of the ac- 324

tor’s actions by masking the Q-value of actions at according 325

to the director’s option ot. To realize a differentiable discrete 326

sample of the director’s option and alleviate the bad effect of 327

model bias on the mutual influence between the director and 328

actor, we model ot by sampling from a categorical distribu- 329

tion with Gumbel-softmax as: 330

P ∗(st, ot) =
exp((log(P (st, ot)) + ϵ)/τ)∑
o∈O exp((log(P (st, o)) + ϵ)/τ)

, (12)

where ϵ = −log(−log(x)) and x is sampled from 331

Uniform(0, 1). The temperature parameter τ controls the 332

bias and variance of the likelihood distribution. When τ is 333



larger, the likelihood is smoother with more variance and less334

bias. P (st, ot) is calculated with the softmax function as:335

P (st, ot) =
exp(Qo(st, ot))∑

o∈O Qo(st, o)
, (13)

where O = {ask, rec} denotes the space for the director’s336

option. Gumbel-Softmax is used to alleviate the bias when337

lacking policy learning in the mutual influence between Di-338

rector and Actor: (1)Biases (e.g., bad options generated in the339

early learning of Director) caused by Director may filter out340

of efficient actions for the Actor. Hence, we consider sam-341

pling options from a Gumbel distribution, which may pave342

the way to explore the right action for Actor; (2)Bias (e.g.,343

false feedback) caused by Actor may affect the convergence344

of Director, and thus to alleviate the issue, we consider to op-345

timize the Gumbel distribution, rather than the deterministic346

function of Director’s option.347

The optimal Q-function with the maximum expected re-348

ward Q∗
o(st, ot) and Q∗

a(st, at) for the director’s option and349

the actor’s primitive action are achieved by optimizing the350

hierarchical policy πo and πa, follows the Bellman function351

[Bellman and Kalaba, 1957] as:352

Q∗
o(st, ot) = Est+1

[rot + γ max
ot+1∈O

Q∗
o(st+1, ot+1|ot)], (14)

Q∗
a(st, at) = Est+1 [r

a
t + γ max

at+1∈At+1|ot+1

Q∗
a(st+1, at+1|at)],

(15)
where At+1|ot+1

denotes the action space of the actor’s prim-353

itive actions according to the director’s option (i.e., At+1|ask354

denotes all the candidate attributes and At+1|rec denotes all355

the candidate items).356

Model training. For each turn, the agent will get the intrin-357

sic motivation rot to the director’s option, the extrinsic reward358

rat to the actor’s primitive action, and the candidate actions359

space At+1 is updated according to the user’s feedback. We360

define a replay buffer D following Deng et al. [2021], which361

stores the experience (st, ot, at, r
o
t , r

a
t , st+1,At+1). For the362

training procedure, we sample mini-batch from the buffer and363

optimize the model with loss function as follows:364

L1(θQ) = E(st,ot,rot ,st+1)∼D[(y
o
t −Qo(st, ot; θQ))

2], (16)

L2(θQ) = E(st,at,rat ,st+1,At+1)∼D[(y
a
t −Qa(st, at; θQ))

2].

(17)
L1 and L2 are alternatively optimized to teach DAHCR ef-365

ficiently interacts with the user and predict the user’s prefer-366

ence, where θQ = {θV , θA}, and yot , yat are target values for367

the director’s options and the actor’s actions, which are based368

on the optimal value function as:369

yot = rot + γ max
ot+1∈O

Q∗
o(st+1, ot+1; θQ), (18)

370
yat = rat + γ max

at+1∈At+1

Q∗
a(st+2, at+1; θQ). (19)

To alleviate the problem of overestimation bias, we adopt the371

double Q-learning [Van Hasselt et al., 2016] to employ target372

networks Q
′

o and Q
′

a as period copies from the online net-373

works to train the network following previous works [Deng374

et al., 2021; Lei et al., 2020b].375

Dataset LastFM LastFM* Yelp Yelp*

Users 1,801 1,801 27,675 27,675
Items 7,432 7,432 70,311 70,311
Interactions 76,693 76,693 1,368,606 1,368,606
Attributes 33 8,438 29 590
Entities 9,266 17,671 98,605 98,576
Relations 4 4 3 3
Triples 138,215 228,217 2,884,567 2,533,827

Table 1: Statistics of datasets.

4 Experiments 376

To fully demonstrate the superiority of our method, we con- 377

duct experiments to verify the following three research ques- 378

tions (RQ): 379

• RQ1: Compared with the state-of-the-art methods, does 380

our framework achieves better performance? 381

• RQ2: What are the impacts of key components on per- 382

formance? 383

• RQ3: How do hyper-parameters settings (such as the 384

layer number of hypergraph neural networks) affect our 385

framework? 386

4.1 Experiment Setting 387

Datasets. For better comparison, we follow previous works 388

to conduct experiments1 on LastFM, LastFM* for music artist 389

recommendation and Yelp, Yelp* for the business recommen- 390

dation. The statistics of datasets are illustrated in Table 1. 391

• LastFM [Lei et al., 2020a]: LastFM is designed to eval- 392

uate the binary question scenario for the music artist 393

recommendation, where the user gives preference to- 394

wards an attribute using yes or no. Following Lei et al. 395

[2020a], we manually merge relevant attributes into 33 396

coarse-grained attributes. 397

• Yelp [Lei et al., 2020a]: Yelp is designed for enumerated 398

questions for the business recommendation, where the 399

user can select multiple attributes under one category. 400

• LastFM* and Yelp* [Lei et al., 2020b]: Following Lei 401

et al. [2020b], we construct the datasets with original 402

attributes and pruning off the attributes with frequency 403

< 10, named LastFM* (containing 8438 attributes) and 404

Yelp* (containing 590 attributes) separately. 405

Metrics. 406

Following previous studies [Lei et al., 2020a; Lei et al., 407

2020b; Deng et al., 2021], we adopt three widely used metrics 408

for conversational recommendation: SR@t, AT, and hDCG. 409

Success rate (SR@t) is adopted to measure the cumulative 410

ratio of successful recommendations by the turn t. Average 411

turns (AT) is used to evaluate the average number of turns for 412

all sessions. hDCG@(T, K) is used to additionally evaluate 413

the ranking performance of recommendations. Therefore, the 414

higher SR@t and hDCG@(T, K) indicate better performance, 415

while the lower AT means an overall higher efficiency. 416

1https://github.com/Snnzhao/DAHCR



Models LastFM LastFM* Yelp Yelp*
SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

Abs Greedy 0.222 13.48 0.073 0.635 8.66 0.267 0.264 12.57 0.145 0.189 13.43 0.089
Max Entropy 0.283 13.91 0.083 0.669 9.33 0.269 0.921 6.59 0.338 0.398 13.42 0.121

CRM 0.325 13.75 0.092 0.580 10.79 0.224 0.923 6.25 0.353 0.177 13.69 0.070
EAR 0.429 12.88 0.136 0.595 10.51 0.230 0.967 5.74 0.378 0.182 13.63 0.079
SCPR 0.465 12.86 0.139 0.709 8.43 0.317 0.973 5.67 0.382 0.489 12.62 0.159

UNICORN 0.547 11.57 0.176 0.798 7.58 0.412 0.985 5.33 0.397 0.522 11.55 0.174
MCMIPL 0.633 11.54 0.191 0.839 6.89 0.412 0.981 5.65 0.387 0.552 11.31 0.178

DAHCR 0.712† 10.83† 0.213† 0.925† 6.31† 0.431† 0.992 5.16† 0.400† 0.626† 11.02† 0.192†

Table 2: Experimental results.† represents the improvement of DAHCR over all baselines is statistically significant with p-value < 0.01.
hDCG indicates hDCG@(15, 10). SR@15 and hDCG are the higher the better, while AT is the lower the better.

Implementation Details.417

Following previous works [Deng et al., 2021; Lei et al.,418

2020b], we adopt TransE [Bordes et al., 2013] from OpenKE419

[Han et al., 2018] to pretrain the embedding of nodes in the420

constructed graph with the training set. The embedding size421

and the hidden size are set as 64 and 100. The temperature422

parameter τ is set to be 0.7 for Yelp* and 0.3 for the other423

three datasets. The layer number of hypergraph neural net-424

works is selected from 1, 2, 3, and 4. We set the intrinsic425

motivations as: ro+ = 1, ro− = −1. The settings of the extrin-426

sic rewards are the same as previous works [Lei et al., 2020a;427

Lei et al., 2020b; Deng et al., 2021]: rarec acc = 1, rarec rej =428

−0.1, raask acc = 0.01, raask rej = −0.1, raquit = −0.3. In the429

training procedure, the size of the experience replay buffer430

is 50,000, and the batch size is 128. The learning rate and431

the L2 norm regularization are set to be 1e-4 and 1e-6, with432

Adam optimizer. The discount factor γ is set as 0.999. Our433

experiment is conducted on Nvidia RTX 3090 graphic cards434

equipped with an AMD r9-5900x CPU (32GB Memory).435

4.2 Baselines436

To demonstrate the effectiveness of the proposed DAHCR,437

we choose state-of-the-art methods for comparison. Specif-438

ically, we first choose two rule-based methods, three rein-439

forcement learning-based methods that outsource part of de-440

cision procedures, and then two reinforcement learning (RL)-441

based method that unifies two decision procedures.442

• Max Entropy [Lei et al., 2020a]. This method employs443

a rule-based strategy to ask and recommend. It chooses444

to select an attribute with maximum entropy based on445

the current state, or recommends the top-ranked item446

with certain probabilities.447

• Abs Greedy [Christakopoulou et al., 2016]. This448

method only makes the item-recommendation actions449

and updates the model based on the feedback. It keeps450

recommending items until the successful recommenda-451

tion is made or the pre-defined round is reached.452

• CRM [Sun and Zhang, 2018]. A RL-based method that453

records the users’ preferences into a belief tracker and454

learns the policy deciding when and which attributes to455

ask based on the belief tracker.456

• EAR [Lei et al., 2020a]. This method proposes a 457

three-stage solution to enhance the interaction between 458

the conversational component and the recommendation 459

component. 460

• SCPR [Lei et al., 2020b] This method models CRS as 461

an interactive path reasoning problem. It prunes irrele- 462

vant candidate attributes by traversing attribute vertices 463

on the graph based on user feedback. 464

• UNICORN [Deng et al., 2021] A RL-based approach 465

that unifies the two decision strategies. It learns graph- 466

enhanced state representations for RL via graph neural 467

networks. 468

• MCMIPL [Zhang et al., 2022] A state-of-the-art ap- 469

proach to CRS that extends the unified conversational 470

recommendation strategy with multi-interest representa- 471

tions of the user. 472

4.3 Performance Comparison (RQ1) 473

Overall performance. 474

From the overall performance of all methods reported in Ta- 475

ble 2, we make the following observations: 476

• Our proposed DAHCR achieves the best perfor- 477

mance. DAHCR significantly outperforms all the base- 478

lines by achieving a higher success rate and hDCG, and 479

less average turn on four datasets. The reason for such 480

improvement can be attributed to the following aspects: 481

i) With the hierarchical strategy, our proposed DAHCR 482

can reduce the action space and avoid the data bias in- 483

troduced by the imbalance in the number of items and 484

attributes. ii) The director and actor in DAHCR can well 485

play their roles of choosing the effective option (i.e., 486

ask or recommend) and learning the user’s preference 487

over the candidate items and attributes. iii) The intrin- 488

sic motivation can well deal with the problem of weak 489

supervision on the director’s option effectiveness. iv) 490

Modeling user preferences with dynamic hypergraph, 491

DAHCR could specify the attributes that motivate the 492

user to like/dislike the item with high-order relations. v) 493

Modeling the director’s option by sampling from a cat- 494

egorical distribution can well alleviate the bad effect of 495

model bias on the mutual influence between the director 496

and the actor. 497



• Mutual influence of different decision procedures498

and the user’s dynamic preference in the pol-499

icy learning is important for CRS. From Table 2,500

DAHCR, MCMIPL and UNICORN surpasses CRM,501

EAR and SCPR in terms of three metrics over four502

datasets. There are two reasons for this performance: (i)503

CRM, EAR and SCPR isolate the strategies for different504

decision procedures during the training process, which505

will make the conversational recommendation strategy506

hard to converge. This demonstrate the importance of507

the mutual influence between different decision proce-508

dures in the training process. (ii) Compared with other509

methods, DAHCR, MCMIPL and UNICORN use rein-510

forcement learning to update the user’s preference on the511

attributes and items, which leads to better performance.512

This proves the importance of learning the user’s dy-513

namic preference for CRS.514
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Figure 3: Test performance at different training epochs.

Training Efficiency.515

Figure 3 shows the performance curves of the different meth-516

ods tested on LastFM* and Yelp*, respectively. The test per-517

formance curves for the unsupervised methods Max Entropy518

and Abs Greedy are shown as two horizontal lines for com-519

parison. It can be seen that DAHCR is far superior in con-520

verge speed and stability to all the baselines. The reason is521

that the hierarchical conversational recommendation strategy522

of DAHCR can realize more effective action choice and bet-523

ter learn the user’s preference. In the Yelp∗, where the action524

candidate space is larger, the performance of EAR and CRM525

does not improve much or even gets worse as the training526

process iterates. These results demonstrate the efficiency and527

effectiveness of the proposed DAHCR.

LastFM* Yelp*

SR@15 AT hDCG SR@15 AT hDCG

DAHCR 0.925 6.31 0.431 0.626 11.02 0.192

(a) - w/o Hie. 0.842 6.88 0.415 0.551 11.35 0.176
(b) - w/o Hyper. 0.909 6.54 0.428 0.608 11.13 0.189
(c) - w/o Gumbel. 0.863 6.70 0.418 0.560 11.30 0.181
(d) - w/o Intrinsic. 0.887 6.63 0.424 0.570 11.31 0.183

Table 3: Results of the Ablation Study.

528

4.4 Study of DAHCR (RQ2&RQ3)529

Next we investigate the underlining mechanism of our530

DAHCR with four ablated models that remove the hierarchi-531

cal framework, dynamic hypergraph, Gumbel-softmax, and 532

intrinsic motivation, respectively. From the results in Table 3, 533

we observe that: 534

• The performance of DAHCR suffers a significant degra- 535

dation when replacing the hierarchical framework with 536

the unified framework. This demonstrates the impor- 537

tance of modeling the variant roles of different decision 538

procedures in CRS. 539

• The performance of DAHCR drops when replacing the 540

dynamic hypergraph neural networks with graph neu- 541

ral networks. We attribute this to the importance of 542

high-order relations (i.e., user-attribute-item) in model- 543

ing user preferences for CRS. 544

• The model performs worse when removing the Gumbel- 545

softmax. This result suggests that alleviating the bad 546

effect of model bias on the mutual influence between 547

the director and the actor is necessary. Our method that 548

models the director’s option by sampling from the cat- 549

egorical distribution with Gumbel-softmax can reason- 550

ably deal with such an effect. 551

• The performance of the model drops when removing the 552

intrinsic motivation, which indicates the necessity of in- 553

trinsic motivation to train DAHCR from weak supervi- 554

sion on the director’s effectiveness. 555

Figure 4 shows the experimental results by varying the layer 556

number of hypergraph neural networks. Two-layer DAHCR 557

performs better than one-layer DAHCR since it can capture 558

high-order collaborative information in the dynamic hyper- 559

graph. But the performance of DAHCR does not always in- 560

crease when the layer number increases. We attribute this to 561

the noise that increases along with the hop of neighbors.
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Figure 4: Impact of Layer Number(L)
562

5 Conclusion 563

In this work, we propose a Director-Actor Hierarchical Con- 564

versational Recommender (DAHCR) with the director to se- 565

lect the most effective option (i.e., ask or recommend), fol- 566

lowed by the actor accordingly choosing primitive actions 567

that satisfy user preferences. The intrinsic motivation is de- 568

signed for training from weak supervision on the director’s ef- 569

fectiveness, a dynamic hypergraph is developed to learn user 570

preferences from high-order relations, and Gumbel-softmax 571

is employed to alleviate the bad effect of model bias on the 572

mutual influence between director and actor. Experimental 573

results on two real-world datasets show that the proposed 574

DAHCR outperforms the state-of-the-art methods. 575
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