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ABSTRACT

Conversational recommendation systems (CRS) aim to interactively
acquire user preferences and accordingly recommend items to users.
Accurately learning the dynamic user preferences is of crucial im-
portance for CRS. Previous works learn the user preferences with
pairwise relations from the interactive conversation and item knowl-
edge, while largely ignoring the fact that factors for a relationship in
CRS are multiplex. Specifically, the user likes/dislikes the items that
satisfy some attributes (Like/Dislike view). Moreover social influ-
ence is another important factor that affects user preference towards
the item (Social view), while is largely ignored by previous works in
CRS. The user preferences from these three views are inherently dif-
ferent but also correlated as a whole. The user preferences from the
same views should be more similar than that from different views.
The user preferences from Like View should be similar to Social
View while different from Dislike View. To this end, we propose
a novel model, namely Multi-view Hypergraph Contrastive Policy
Learning (MHCPL). Specifically, MHCPL timely chooses useful
social information according to the interactive history and builds a
dynamic hypergraph with three types of multiplex relations from dif-
ferent views. The multiplex relations in each view are successively
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connected according to their generation order in the interactive con-
versation. A hierarchical hypergraph neural network is proposed to
learn user preferences by integrating information of the graphical
and sequential structure from the dynamic hypergraph. A cross-view
contrastive learning module is proposed to maintain the inherent
characteristics and the correlations of user preferences from differ-
ent views. Extensive experiments conducted on benchmark datasets
demonstrate that MHCPL outperforms the state-of-the-art methods.
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1 INTRODUCTION

Recommendation systems [12, 39, 41, 45, 50] are emerging as an
efficient tool to help users find items of potential interest. They
conventionally learn user preferences from their historical actions
[16, 32], while hardly acquiring dynamic user preferences which
often drift with time. To this end, conversational recommendation
systems (CRS) [23] are proposed to dynamically acquire user pref-
erences and accordingly make recommendations through interactive
conversations. Different settings [6, 7, 34] of CRS are explored and
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Figure 1: Common types of multiplex user relations from differ-
ent views in the scenario of conversational recommendation.

we focus on the Multi-Interest Multi-round Conversational Rec-
ommendation (MMCR) [49] in which users could accept multiple
items and CRS needs to strategically ask multi-choice questions
about user-preferred attributes and accordingly recommend items,
reaching success in the limited turns.

Learning the dynamic user preferences for the candidate attributes
and items accurately is of crucial importance for CRS. CRM [34]
and EAR [22] develop factorization-based methods to learn user
preferences from pairwise interactions, but they fail to capture multi-
hop information from the connectivity graph. SCPR [24] learns user
preferences by reasoning the path on the user-item-attribute graph.
Unicorn [9] and MCMIPL [49] further apply graph neural networks
to learn user preferences from the graph structure that captures rich
correlations among different types of nodes (i.e., user, attribute, and
item). Despite effectiveness, previous works learn user preferences
with pairwise relations from the interactive conversation (i.e., user-
item and user-attribute relations) and the item knowledge (i.e., item-
attribute relations), while largely ignoring the fact that factors for
a relationship in CRS are multiplex. For the example in Fig.1, the
user dislikes Switch because of its attribute named "game console"
rather than its other attributes like "electronics". Moreover, social
influence is also an important factor that affects user preferences
towards the item, since people with social connections will influence
each other, leading to similar interests [8, 13]. However, in the
field of CRS, social information is seldom explored. Inspired by the
advantage of hypergraph [11, 46] in modeling the multiplex relations
(i.e., relations that connect more than two nodes), we investigate the
potential of hypergraph modeling with the integration of interactive
conversation, item knowledge, and social influence for learning
dynamic user preferences in CRS.

Actually, it’s non-trivial to build a hypergraph for learning dy-
namic user preferences in CRS, due to three challenges: 1) The first
challenge is the dynamic filtering and utilizing of social information.
The social information conventionally contains all the historical in-
teractions of the user’s friends, which could be noisy for the dynamic
user preferences in the current conversation, since only friend pref-
erences that satisfy the current conversation are helpful for dynamic
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user preferences learning. For the example in Fig.1, only the friends’
preferences for "smartphone" are helpful for learning the dynamic
user preferences. 2) The second challenge is hypergraph formulation.
In the scenario of CRS (as illustrated in Fig.1), there mainly remain
three multiplex relation patterns, that is, the user likes/dislikes the
items that satisfy some attribute (Like/Dislike view) and the user
shares the preferences for items with some friend (Social view).
Each relation pattern corresponds to a kind of hyperedges, which are
successively generated during the interactive conversation. 3) The
third challenge is the aggregation of user preferences learned from
different views, which might obscure the inherent characteristics
of preference distributions from different views and the correla-
tion between them. Specifically, user preferences from the same
views should be more similar than user preferences from different
views. And the user preferences from Like View should be similar
to Social View while different from Dislike View. Contrastive learn-
ing [15, 38, 42], one successful self-supervised learning paradigm,
which aims to learn discriminative representations by contrasting
positive and negative samples, paves a way to maintain the inherent
characteristics and the correlation of user preferences learned from
different views.

To this end, we propose a novel hypergraph-based model, namely
Multi-view Hypergraph Contrastive Policy Learning (MHCPL). Spe-
cifically, MHCPL dynamically filters social information according
to the interactive conversation and builds a dynamic multi-view hy-
pergraph with three types of multiplex relations from different views:
the user likes/dislikes the items that satisfy some attribute (Like/Dis-
like view) and the user shares the preferences for items with some
friend (Social view). The multiplex relations in each view are succes-
sively connected according to their generation order in the interactive
conversation. A hierarchical hypergraph neural network is proposed
to learn user preferences by integrating information of the graphical
and sequential structure from the dynamic hypergraph. Furthermore,
a cross-view contrastive learning module is proposed with two terms
to maintain the inherent characteristics and the correlations of user
preferences from different views. Extensive experiments conducted
on Yelp and LastFM demonstrate that our proposed model MHCPL
outperforms the state-of-the-art methods.

Our contributions of this work are summarized as follows:

o General Aspects: We emphasize the importance of multiplex
relations and investigate three views of multiplex relations
that integrate interactive conversation, item knowledge, and
social influence for dynamic user preference learning in CRS.

o Novel Methodologies: We propose the model MHCPL, which
builds a multi-view hypergraph contrastive policy learning
framework for CRS. MHCPL timely filters social information
according to the interactive conversation and learns dynamic
user preferences with three types of multiplex relations from
different views. Moreover, a cross-view contrastive learning
module is proposed to maintain the inherent characteristics
and the correlations of user preferences from different views.

o Multifaceted Experiments: We conduct extensive experi-
ments on two benchmark datasets. The results demonstrate
the advantage of our MHCPL in better dynamic user prefer-
ence learning, which shows the effectiveness of our MHCPL
for conversational recommendation.
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2 RELATED WORKS
2.1 Conversational Recommendation

Conversational recommendation systems (CRS) [23, 31, 47, 51]
aim to communicate with the user and recommend items based on
the attributes explicitly asked during the conversation. Due to its
ability to dynamically get the user’s feedback, CRS has become an
effective solution for capturing dynamic user preferences and solving
the explainability problem. Various efforts have been conducted to
explore the challenges in CRS which can mainly be categorized into
two tasks: dialogue-biased CRS studies the dialogue understanding
and generation [5, 19, 25, 26], and recommendation-biased CRS
explores the strategy to consult and recommend [6, 7, 22, 34]. This
work focuses on the recommendation-biased CRS.

Early works on the recommendation-biased CRS [6, 7, 34] only
consider the conversational recommendation under simplified set-
tings. For example, Christakopoulou et al. [7] consider the situation
that CRS only needs to recommend without asking the user about
his/her preferred attributes. The Q&A work [6] proposes to explore
the situation that CRS jointly asks attributes and recommends items,
but restricts the conversational recommendation to two turns: one to
ask attributes and the other to recommend items. To explore a more
realistic scenario of the recommendation-biased CRS, further efforts
[22, 24] based on the reinforcement learning (RL) are conducted
to explore the problem of multi-round conversational recommenda-
tion (MCR) which aims to strategically ask users binary questions
towards attributes and recommend items in multiple rounds, achiev-
ing success in the limited turns. Zhang et al. [49] further explore
the setting of multi-interest MCR (MMCR) where users may have
multiple interests in attribute combinations and allows CRS to ask
multi-choice questions towards the user-preferred attributes.

The main challenge of MCR is how to dynamically learn user pref-
erences, and accordingly choose actions that satisfy user preferences.
CRM [34] and EAR [22] learn user preferences with a factorization-
based method under the pairwise Bayesian Personalized Ranking
(BPR) framework [33]. SCPR [24] learns user preferences by rea-
soning the path on the user-item-attribute graph and strictly chooses
actions on the path. Unicorn [9] builds a weighted graph to model
the dynamic relationship between the user and the candidate action
space and proposes a graph-based Markov Decision Process (MDP)
environment to learn dynamic user preferences and choose actions
from the candidate action space. MCMIPL [49] further considers
the multiple interests of the user and develops a multi-interest pol-
icy learning module that combines the graph-based MDP with the
multi-attention mechanism. Despite effectiveness, previous works
model user preferences with binary relations, while hardly capturing
the multiplex relations which are important in modeling dynamic
user preferences for CRS. Furthermore, previous methods ignore the
influence of social relations on user preferences.

2.2 Social Recommendation

Social recommendation [13, 18, 20] aims to exploit social relations
to enhance the recommender system. According to the social science
theories [1, 3, 29], user decisions are influenced by their social
relations, leading to similar preferences among social neighbors.
Following this assumption, SoRec [28] jointly factorizes the user-
item matrix and the user-user social relation matrix by sharing the

SIGIR 23, July 23-27, 2023, Taipei, Taiwan

same user preference latent factor. STE [27] learns user preferences
by linearly combing the preference latent factor of the user and
his/her social neighbors. SocialMF [17] forces the user preference
latent factor to be similar to that of his/her social neighbors by
adding regularization to the user-item matrix factorization. These
works only leverage first-order social neighbors for recommendation
and ignore the fact that the social influence could diffuse recursively
through social networks.

To model the high-order social influence, graph neural networks
(GNNp5s) [21] are introduced to social recommendation due to their
superiority in learning the graph structure. GraphRec [10] applies
GNNs to capture the heterogeneous graph information from the user-
item interactions and social relations. DiffNet [44] and its extension
DiffNet++ [43] develop a layer-wise influence propagation structure
to model the recursive social diffusion in social recommendation.
These works model user preferences with pairwise relations and
fail to capture the complex multiplex user relation patterns (i.e.,
user-friend-item). MHCN [48] constructs hypergraphs by unifying
nodes that form specific triangular relations and applies hypergraph
neural network [11, 46] to model user preferences with hypergraphs.
Despite effectiveness, previous works treat social relations as static
information to enhance the learning of user preferences, while ig-
noring the dynamic characteristic of user preferences and failing to
dynamically choose helpful social information for the learning of
user preferences.

3 DEFINITION AND PRELIMINARY

In this section, we formulate the problem of multi-interest Multi-
round Conversational Recommendation (MMCR) [49].

Specifically, we define the set of items “V, attributes ¥, and at-
tributes types C. Each item v € V is associated with a set of at-
tributes P, C ¥ and each attribute p has its corresponding type
¢p € C. In each episode, there exists an item set V;, that is accept-
able for the user. Then CRS screens out candidate items V,;,qg € V
that contains the user-preferred attribute py and candidate attributes
P.ana S P that are associated to the candidate items. Then in each
turn t (t = 1,2,---,T; T is the max turn of the session), the CRS
can either ask K), attribute P. € Pcand corresponding to the same
attribute type c, or recommend K, items V € Veand:

o If the CRS chooses to ask, the user gives feedback according
to whether P is associated with one of the items in the target
item set V.

o If the CRS chooses to recommend, the user chooses to accept
or not according to whether one of the items in the target item
set V, is listed in the recommended items V.

The session of MMCR terminates if the user accepts the recom-
mended items or leaves impatiently when the max turn accesses.

4 FRAMEWORK

In this section, we propose a novel Multi-view Hypergraph Con-
trastive Policy Learning (MHCPL) illustrated in Figure 2 that learns
user preferences from the hypergraph integrating the interactive con-
versation, item knowledge and social information, and accordingly
chooses actions. The Markov Decision Process (MDP) [35] formu-
lation of our framework contains four components: multi-view user
preference modeling, action, transition, and reward.
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4.1 Multi-view User Preference Modeling

We first encode the state s;, which contains the interactive conver-
sation information 7, between the user and CRS, and the social
information 7, that helps learn user preferences:

st = (570, (1)
where Iu(t) = [P‘gig,P(” yW) pt) q,(1) ] records the interac-

rej’ "rej’” cand’ ' cand
tive history, and ﬁ(t) denotes user’s friends who have preferred
items satisfying the interactive history Iu(t), which is updated by:

Fall = {f | f e Fuand V) 2 0}, @)

where 7, denotes the friends of the user, V ]Et) = (Vf N (VC((Z d indi-
cates the set of items that are acceptable for the friend f and satisfy
the interactive history. To this end, we build a dynamic hypergraph
that integrates the interactive conversation, item knowledge, and
social information to learn the user preference representation. More-
over, we develop a hypergraph-based state encoder to learn user
preferences with multiplex relations from different views.

4.2 Action

According to the state s;, the CRS agent chooses an action a; from
the action space A;. The action space A; contains candidate at-

tributes P ) , and candidate items V. (£) 4> Which are updated by:
can can

cand rej

y® {U loeVp, =V and P, n Pl 0

3
and P, N Pr(g = 0} ,
) _ (2) ()
Pcand - P(Vc(;l:d ~ Pacc Y Prej’ @

where V), denotes the items that satisfy the initial attribute pg of the
user and P, ,(» indicates attributes that belong to at least one of the

cand
candidate items (Vc(jr)l 4 When the CRS agent chooses to recommend,
the agent chooses the top-K items V(¢ ) from Ajy. If the CRS agent

decides to consult, the agent chooses K, attributes 73C(t) that belong
to the same attribute type c from A;.

4.3 Transition

After the CRS agent chooses the action a;, the state s; will transition
to the next state s;41. Specifically, if the agent chooses to consult,
the attribute the user accepts and rejects in the current turn can

be defined as PC(,?KQCC and P i Then the state is updated by

cur_re
Phet!) = PULUPELY e and TV =P UPLL) . When the

agent chooses to recommend items V () and the user rejects all the
items, the state is updated by (Vr(;;l) = (Vr(et]? U V@) Otherwise,
this session ends with success.

4.4 Reward

In this work, we design five kinds of rewards following previous
works [49]: (1) rrec_suc, a strong reward when recommending suc-
cessfully; (2) ryec_faqil, @ weak penalty when the user rejects the
recommended items; (3) rqgk_suc» @ Weak reward when the user ac-
cepts the asked attributes; (4) rysk_fqii> @ weak penalty when the
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user rejects the asked attributes; (5) rquiz, a strong penalty when

the session quits without success. The reward on the multi-choice

question is designed as ry = me Task_sue + me Task_rej-
cur—acc

currej

S MULTI-VIEW HYPERGRAPH
CONTRASTIVE POLICY LEARNING

In this section, we detail the design of the Multi-view Hypergraph
Contrastive Policy Learning (MHCPL). As shown in Figure 2, to
model the dynamic user preferences, we build a hypergraph with
three types of multiplex relations from different views to integrate
information from the interactive conversation, item knowledge, and
social information. To comprehensively learn user preferences, we
develop a hypergraph-based state encoder, that captures the graph
structure and the sequential modeling in the dynamic hypergraph,
and propose a cross-view contrastive learning module to maintain the
inherent characteristics and the correlation of user preferences from
different views. Moreover, we develop an action decision policy to
decide the next action based on the learned dynamic user preferences.

5.1 Multi-view Hypergraph Construction

As illustrated in Figure 2, we model the user preference at timestep
t with a multi-view dynamic hypergraph which can be formulated
as gf,” = (N(t),‘H(t),A(t)), including: (1) a node set N@ =
{up v Pr(gj) U 7)552 U ﬂ(t) U Vp,, where V), indicates the items
satisfying the initial attribute po of the user u, and ﬂ(t) denotes the
filtered friends that have preferring items that satisfy the interactive

. t t t t

history Iu( ); (2) a hyperedge set HO = Wl(ik)e ) 'Hcgls) U 7{; ),
where H l(i;)e denotes the user like items that satisfy the attribute (Like
View), ‘H‘E,lts) indicates the user dislike items that satisfy the attribute
(Dislike View), and 7’(}” denotes the user shares preferences to the
items with the friend (Social View). Each hyperedge h € H®) is
corresponding to an attribute py, or friend f;; (3) a |N(t)| X Iﬂ(t)l
adjacent matrix A® which denotes the weighted edge between each
node and hyperedge, with entries denoted as:

. t) t

1, 1fni=u,hj€7fl(ikeu71f<)
-1, if n; =u,hj 67'{(2

1 e (t) 4 . )y aqy ()
_lq’,,(z.”’ if n; Gth ,hj ewlikeUHdis

w_) 1 . (1) (1)
A = T ifni €V, hy € Hy . ®

L ithy e 1D U gy o
, 7€ Mike = Tais ™ Ph;
1, ifhjeﬂf ,ni=fhj
0, otherwise

where (Vh(,t) denotes items connected to the hyperedge h;. Specifi-
cally, when h; € ﬂl(i;)e u ﬂég, (V}fjt) means items that satisfy the
corresponding attribute Ph;- And when h; € W}t), it means the
friend fhj ’s acceptable items that satisfy the interactive history Iu(t).
We filter out the noise in friends’ acceptable items with the interac-
tive history to help learn the user’s current dynamic preferences.
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Figure 2: The overview of Multi-view Hypergraph Contrastive Policy Learning (MHCPL). It mainly contains four modules: (a)
Multi-view Hypergraph Construction, which dynamically captures multiplex relations from three views. (b) Hypergraph-based State
Encoder, which captures the graph structure and sequential modeling in the dynamic hypergraph. (c) Cross-view Contrastive Learning,
which maintains the inherent characteristics and correlations of user preferences from different views, and (d) Action Decision Policy
Learning to decide the next action based on the learned dynamic user preferences. (Best view in color.)

5.2 Hypergraph-based State Encoder

5.2.1 Hypergraph Message Passing Paradigm. Motivated by
the strength of hypergraph [11, 46] for generalizing the concept of
edge to connect more than two nodes, we endow our MHCPL to
capture multiplex relations under a hypergraph message passing
architecture, where the hyperedges are treated as intermediate hubs
for message passing across different nodes without the hop limitation.
The formal representation of our hypergraph message passing is
formulated as:

I'=ReLU(A-H) =ReLU (A-AT -E), (6)

where E € RIN 1Xd denotes the initial embedding of nodes N ®
in the hypergraph, H € RIHIxd jndicates the hyperedge repre-
sentations aggregated from the node representations, and ReLU(-)
denotes the LeakyReLLU mapping. I denotes the hyper embedding
of the nodes in the hypergraph representation space. With the help
of hypergraph message passing, our MHCPL is capable to capture
the multiplex collaborative relations that specify the attribute/friend

that motivates/discourages the user’s interest in the items.

5.2.2 Hierarchical Hypergraph State Encoder. During the con-
versation, the hyperedges are successively generated when the user
accepts or rejects the asked attribute. Moreover, the higher-level inter-
actions between different hyperedges are also important in learning
user preferences. Although the aforementioned hypergraph message
passing paradigm is capable to capture the multiplex relations, it
fails to model sequential information and hyperedge-wise feature
interactions. Inspired by the success of the Transformer encoder [37]
in capturing sequential information and feature interactions, we em-
ploy the Transformer encoder to realize high-level hyperedge-wise
message passing. Specifically, with the representation of hyperedges
H that aggregate information from neighbor nodes, higher-level
hypergraph layers further pass messages through the interactions
between hyperedges under the same view as:

H=y/(H),H=ATE, (7

where E € RIN" 14 denotes the initial embedding of nodes N (®) in
the hypergraph. W(-) indicates the high-level hypergraph layers. I de-
notes the layer number of high-level hypergraph layers. Hyperedges
7-{0(') of the same view o € {like, dis, f} are successively connected
according to their generation order in the interactive conversation.
To realize this, we apply the Transformer encoder MHSA,(-) on

hyperedges 7’(0(” of each view o as:
Y(Hp) = MHSA(H, ' Hy™' Hy ™). ®)

After the high-level hyperedge message passing, we aggregate the
information from hyperedges to refine the node representations as:

I, = ReLU(A - H) = ReLU ((H (AT E)) , )

where 1//1 denotes [ high-level hypergraph layers. The hyper rep-
resentation from different layers of the user is summed to get the

representation of state s;:
Q=) | Ti(w)
1

5.3 Cross-view Contrastive Learning

Different types of multiplex relations present user preferences from
various views (i.e., Like View, Dislike View, Social View). Actually,
it is still non-trivial to sufficiently integrate user preferences from
different views, since it might obscure the inherent characteristics
of preference distributions from different views and the correlation
between them. Specifically, the user preferences from the same view
should be more similar than those from different views. Also, user
preferences from Like View should be similar to Social View while
different from Dislike View. To capture these two correlations and

10
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better integrate user preferences from different views, we develop
cross-view contrastive learning based on InfoNCE[30] as:
LSSL =
X exp(s(HpHp+)/7)
-3 3 log .~

0 ieH,
iteH, i—eH-H,

D, exp(s (HyHp) /D+ ) exp(s (Hi Hi-) /7)

positive pairs negative pairs
X exp(s(HpHp+) /1)

iteq
i EH0+

-2 X log
0 ieH,

iteH,+ ieH,-

D, exp(s(HyHe) /1) + Y exp(s (Hy Hi-) /1)

positive pairs negative pairs

D
where o € {like, dis, f} denotes three views, H = Hjr, UHg;s UH
indicates the set of hyperedges, H denotes the representations of
hyperedges, and s(+) is the cosine similarity function. In Eq.11, the
first term is designed to maintain the intrinsic characteristics of
user preferences from each view, which treats the hyperedges of the
same view as positive pairs, while the different-view hyperedges as
negative pairs. The second term of Eq.11 is designed to maintain
the correlation of user preferences from different views, where the
hyperedges in Hj;x, and Hy are treated as positive pairs to each
other, while treated as negative pairs with the hyperedges in Hy;,.

5.4 Action Decision Policy Learning

A large action search space reduces the efficiency of policy learning.
Following [9, 49], we select top-%K, candidate items and top-K}, can-
didate attributes to form the action space A;. To this end, we develop
a multi-view action selection strategy, which selects items/attributes
according to user preferences from three views. Specifically, we rank
them based on their similarity with accepted attributes in the interac-
tive conversation and filtered social information and their difference
with rejected attributes in the interactive conversation as:

Wz()t):o' ele, + Z eZe,,+ Z eféf— Z egep,
=

rej

12)

wigt) =0 egep + Z elT,ep/ + Z eIT,éf - Z egep/ R
perl feRt  penl)

(13)

where ey, ey, €p and e - are embeddings of the user, item, attribute,

and friend. & = Zv,e (0 €y Tepresents friend preferences that
f

satisfy the interactive history, o(-) denotes the sigmoid function.

With the action space A; and the state representation q;, we
introduce the dueling Q-networks [40] to determine the next action
and calculate the Q-value as:

Q (St,a[) = fGV (qt) +f9A (Qts at)’ (14’)

where the value function fp,, (-) and the advantage function fp, (-)
are two separate multi-layer perceptions with 6y and 64 denote the
parameters, respectively. The optimal Q-function Q*(-), which has
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the maximum expected reward achievable by the optimal policy 7*,
follows the Bellman equation [2] as:

Q" (st,at) =Eg,,, [re +v max Q" (str1,ar41 | s ar)|, (15)
ar+1 t+1

where y denotes the discount factor for the delayed rewards.

In each turn, the CRS agent will get the reward r;, and we can
update the state s;1; and the action space Ay according to the
user’s feedback. Following Deng et al. [9], we define a replay buffer
D to store the experience (s, ar, ¢, S¢+1, Ar41). For training of the
DQN, we sample mini-batches from the buffer and minimize the
following loss:

LPON = E(swarrisin, Arn)~D [(yt = Qsrar; %0, gs))z] > (16)

where 05 is the set of parameters in the module for hypergraph-based
representation learning, g = {6y, 04}, and y; is the target value
based on the currently optimal Q*:

yr=re+y max  Q(sp41,ar41:00.05) . amn

ar1 €A
To deal with the overestimation bias in the original DQN, we apply
the double DQN [36], which copies a target network Q/ as a periodic
from the online network to train the model. During training, the ac-
tion decision policy learning in Eq.16, and the cross-view contrastive
learning in Eq.11 are alternatively optimize.

6 EXPERIMENTS

To fully demonstrate the superiority of our proposed MHCPL, we
conduct experiments on two public datasets to explore the following
questions:

e RQ1: How does MHCPL perform compared with the state-
of-the-art methods?

e RQ2: How do different components (social influence, hyper-
graph based state encoder, and cross-view contrastive learn-
ing) affect the results of MHCPL?

e RQ3: How do parameters (the layer number of Hypergraph
based State Encoder) influence the results of MHCPL?

o RQ4: Can our MHCPL effectively leverage the interactive
conversation, item knowledge, and social influence to learn
the dynamic user preferences?

6.1 Datasets

To evaluate the proposed method, we adapt two existing MCR bench-
mark datasets, named Yelp and LastFM. The statistics of these
datasets are presented in Table 1.

o LastFM [22]: LastFM dataset is the music listening dataset
collected from Last.fm online music systems. As Zhang et
al. [49], We define the 33 coarse-grained groups as attribute
types for the 8,438 attributes.

o Yelp [22]: Yelp dataset is adopted from the 2018 edition of the
Yelp challenge. Following Zhang et al. [49], we define the 29
first-layer categories as attribute types, and 590 second-layer
categories as attributes.

Following Zhang et al. [49], we sample two items with partially over-
lapped attributes as the user’s acceptable items for each conversation
episode.
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Dataset Yelp LastFM
Users 27,675 1,801
Items 70,311 7,432

Attributes 590 8,438
Attribute types 29 34

User-Item 1,368,606 76,693

User-User 688,209 23,958
Item-Attribute 477,012 94,446

Table 1: Statistics of two utilized datasets

6.2 Experiments Setup

6.2.1 User Simulator. MMCR is a system that is trained and
evaluated based on interactive conversations with users. Following
the user simulator adopted in [49], we simulate a interactive session
for each user-item set interaction pair (u, V). Each item in the item
setv € V}, is treated as an acceptable item for the user. Each session
is initialized with a user u specifying an attribute po € $joint, Where
Pjoint is the set of attributes that are shared by the items in V,,. Then
the session follows the process of "System Ask or Recommend, User
response” [49] as described in Section 3.

6.2.2 Baselines. To demonstrate the effectiveness of the pro-
posed MHCPL, the state-of-the-art methods are chosen for compari-
son as follows:

e Max Entropy. This method employs a rule-based strategy
to ask and recommend. It chooses to select an attribute with
maximum entropy based on the current state, or recommends
the top-ranked item with certain probabilities [22].

e Greedy[7]. This method only makes item recommendations
and updates the model based on the feedback. It keeps recom-
mending items until the successful recommendation is made
or the pre-defined round is reached.

o CRM][34]. A reinforcement learning-based method that records
the users’ preferences into a belief tracker and learns the pol-
icy deciding when and which attributes to ask based on the
belief tracker.

o EAR[22]. This method proposes a three-stage solution to en-
hance the interaction between the conversational component
and the recommendation component.

o SCPR[24]. This method learns user preferences by reason-
ing the path on the user-item-attribute graph via the user’s
feedback and accordingly chooses actions.

o UNICORNI9]. This work builds a weighted graph to model
the dynamic relationships between the user and the candidate
action space and proposes a graph-based Markov Decision
Process (MDP) environment to learn the user’s dynamic pref-
erences and chooses actions from the candidate action space.

o MCMIPL[49]. This approach proposes a multi-interest pol-
icy learning framework that captures the multiple interests of
the user to decide the next action.

e S*-UNICORN and S*-MCMIPL. For a more comprehen-
sive and fair performance comparison, we adapt UNICORN
and MCMIPL by timely selecting helpful social information
and incorporating it into the weighted graph of the model.
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We name the two adapted methods S*-UNICORN and S*-
MCMIPL.

6.2.3 Parameters Setting. Following [49], we recommend top
K =10 items or ask K, = 2 attributes in each turn. We employ the
Adam optimizer with a learning rate of 1e — 4. Discount factor y
is set to be 0.999. Following [9], we adopt TransE [4] via OpenKE
[14] to pretrain the node embeddings with 64 dimensions in the con-
structed KG with the training set. We make use of Nvidia Titan RTX
graphics cards equipped with AMD r9-5900x CPU (32GB Memory).
For the action space, we select K, = 10 attributes and K, = 10
items. To maintain a fair comparison, we adopt the same reward
settings as previous works [9, 22, 24, 49]: rrec_suc = L Trec_fail =
=0.1, rask_suc = 0.01, rask_fair = 0.1, rquir = —0.3. For MHCPL, we
select the number of layers from 1, 2, 3, 4.

6.2.4 Evaluation Metrics. Following previous works [9, 22, 24],
we adopt success rate (SR@t) to measure the cumulative ratio of
successful recommendations by the turn t, average turns (AT) to eval-
uate the average number of turns for all sessions, and hDCG@(T, K)
to additionally evaluate the ranking performance of recommenda-
tions. Therefore, the higher SR@t and hDCG@(T, K) indicate better
performance, while the lower AT means an overall higher efficiency.

6.3 Performance Comparison (RQ1)

6.3.1 Overall Performance. The comparison experimental re-
sults of the baseline models and our models are shown in Table
2. Based on the comparison in the table, we can summarize our
observations as follows:

e Our proposed MHCPL achieves the best performance. MHCPL
significantly outperforms all the baselines on the metrics of SR@15,
AT and hDCG by over 4.47%, 5.23% and 13.48%, respectively. We
attribute the improvements to the following reasons: 1) The pro-
posed dynamic multi-view hypergraph could effectively capture
multiplex relations from three views. And the proposed hierarchi-
cal hypergraph neural network is able to well learn dynamic user
preferences by integrating the information of graph structure and
sequential modeling from the dynamic multi-view hypergraph;
2) MHCPL timely selects helpful social information and effec-
tively integrates the interactive conversation, item knowledge, and
social influence for better dynamic user preference learning; 3)
MHCPL designs a cross-view contrastive learning method to help
maintain the inherent characteristics and the correlations of user
preferences from different views.

o The learning of the dynamic user preferences is crucial for con-
versational recommendation. The graph-based methods (MHCPL,
MCMIPL, UNICORN, SCPR) outperforms the factorization-based
methods (EAR, CRM) since they learn user preferences from the
collaborative information in the graph. MCMIPL achieves the
best performance among the graph-base baselines since it fur-
ther considers the multiple interests of the user preferences. Our
proposed MHCPL further outperforms these methods since we
leverage multiplex relations to integrate interactive conversation,
item knowledge, and social influence to help learn the dynamic
user preferences.

e Social influence is effective in helping learn dynamic user
preferences for conversational recommendation when well
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Model Yelp LastFM
odels SR@5 SR@I0 SR@15 AT __ hDCG SR@5 SR@I0 SR@15 AT hDCG
Abs Greedy ~ 0.078  0.124 0150  13.65  0.065 0292 0436 0512 10.10 0237
Max Entropy ~ 0.046 0200 0390 1297  0.117 0280 0560  0.680 934  0.263
CRM 0026 0100 0.8 1399  0.059 0092 0240 0372 1256  0.130
EAR 0120  0.198 0240 1291  0.094 0298 0436 0508 1008 0237
SCPR 0.146 0188 0436 1229  0.169 0322 0630 0764 847 0322
UNICORN 0200 0338 0430 1133  0.175 0444 0774 0846  7.10 0348
MCMIPL 0162 0366 0522 1125  0.184 0448 0809 0884 687 0353
S*UNICORN  0.120 0478  0.696 1059 0223 0412 0850 0912 669 0363
S MCMIPL  0.126 0490  0.722 1051  0.230 0442 0872 0940 643 0368
MHCPL 0142 0592 0854 996  0.261 0470 0938 0982 587  0.427
Improv. - 20.82% 18.28%  5.23%  13.48% 491%  757% 447%  871%  16.03%

Sen Zhao, Wei Wei*, Xian-Ling Mao, Shuai Zhu, Minghui Yang, Zujie Wen, Dangyang Chen, and Feida Zhu

Table 2: Performance comparison of different models on the two datasets. The bold number represents the improvement of our model

over baselines is statistically significant with p-value < 0.01. hDCG stands for hDCG @(15, 10).
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Figure 3: Comparisons at Different Conversation Turns.

filtered. The socially adapted methods (i.e., S*-UNICORN and
S*-MCMIPL) outperform their original versions in the final per-
formances. We attribute this to the reason that social influence is
an important factor that affects user preferences and could help
learn dynamic user preferences with friends’ preferences that sat-
isfy the interactive conversation. But the socially adapted methods
perform worse than their original version in the early turns (e.g.,
SR@5). This happens because the information in the interactive
conversation is not sufficient to filter out the noise from the social
information in the early turn of the conversation.

6.3.2 Comparison at Different Conversation Turns. Besides
the performance in the final turn, we also present success rates at
different turns in Figure 3. In order to better observe the differences
among different models, we use the relative success rate compared
with the most competitive baseline S*-MCMIPL, where the blue
line of S*-MCMIPL is set to zero in the figures. From the Figure 3,
we following observations:

e The proposed MHCPL outperforms these baseline methods across
all the datasets and almost all the turns in the conversational
recommendation. This is because our proposed MHCPL could
better learn dynamic user preferences with multiplex relations
that integrate interactive conversation, item knowledge, and social
influence.

e The recommendation success rate of the proposed socially-aware
methods (i.e., MHCPL, S*-MCMIPL, and S*-UNICORN) could

Models Yelp LastFM
SR@15 AT hDCG SR@I5 AT hDCG
Ours 0.854 996 0.261 0982 5.87 0427
-w/o social 0.592 10.80 0.208 0.908 6.63 0.365
-w/o hypergraph 0.726 10.68 0.346 0938 6.58 0.382
-w/o contrastive 0.762 10.37 0.237 0962 6.17 0.403

Table 3: Results of the Ablation Study.

not surpass all the baselines in the early turns of the conversa-
tional recommendation, especially on the dataset Yelp with a
larger candidate space of items and attributes. This is because
the information in the interactive conversation is not sufficient to
filter out the noise from the social information at the early turn
of the conversation. Furthermore, socially-aware methods prefer
to ask rather than recommend in the early turns when the user’s
preference is not certain enough. This will effectively reduce the
action space and better learn user preferences, but lead to a lower
recommendation success rate in the early turns.

6.4 Ablation Studies (RQ2)

To investigate the underline mechanism of our proposed MHCPL,
we conduct a series of ablation experiments on the Yelp and LastFM
datasets with three ablated methods including: MHCPL,, /, social
that ablates the social influence, MHCPL,, /, pypergrapn that re-
places the hypergraph neural networks with graph neural networks,
and MHCPL,, /,, contrastive that ablates the cross-view contrastive
learning. From results are shown in Table 3, we have the following
observations:

e MHCPL,, /,, social 1S the least competitive. This demonstrates
the importance of social influence in alleviating the data spar-
sity problem and helping learn dynamic user preferences. And
it is effective to accordingly choose helpful social information
based on interactive conversation. MHCPL,, /, sociq Still out-
performs all the baselines that ignore the social information
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in Table 2, which proves the effectiveness of our multi-view
hypergraph contrastive policy learning strategy in learning
dynamic user preferences with multiplex relations.

o MHCPL outperforms MHCPL,, / 5 hypergrapn- We contribute
this to the importance of multiplex relations in learning dy-
namic user preferences. This also proves the effectiveness of
our proposed multi-view hypergraph-based state encoder in
learning user preferences by integrating the information of
graph structure and sequential modeling from the dynamic
multi-view hypergraph.

e MHCPL outperforms MHCPL,, /,, contrastive- This demon-
strates the effectiveness of the cross-view contrastive learning
module in helping maintain the inherent characteristics and
correlations of user preferences from different views.

YELP LastFM
0.88 =— 10.55 0.995 —————6.36
0.87 +i$@15 10.45 : 6.28
0.985
o, 0-86 1035 6.20
=,0.85 10.25 . 5, 0975 6.12
& 0.84 10.15 < z 0.965 6.04
0.83 1005 @ 0.955 5.96
0.82 9.95 0.945 5.88
0.81 9.85 0.935 5.80
2 3 4 1 2 3 4
number of layers number of layers
Figure 4: Impact of Layer Number(L)
6.5 Hyper-parameter Sensitivity Analysis (RQ3)
6.5.1 Impact of Layer Number. The hypergraph-based state

encoder learns the dynamic user preference from the multiplex re-
lations in the hypergraph. By stacking more layers, collaborative
information from multi-hop neighbors is distilled. We investigate
how the number of layers influences the performance of MHCPL.
Specifically, we conduct experiments with layer number L in the
range {1, 2,3,4}, and the results are shown in Figure 4. There are
some observations:

o Increasing the number of layers can improve the performance
of our model. MHCPL-2 highly outperforms MHCPL-1. The
reason is that MHCPL-1 only gains information from the
one-hop neighbors and neglects high-order collaborative in-
formation.

e When increasing the layer of number, the performance does
not always improve. MHCPL-3 outperforms MHCPL-4 on
data LastFM. This can be attributed to the noise which in-
creases along with the hop of neighbors.

6.6 Case Study (RQ4)

To show the effectiveness of our proposed MHCPL in leveraging
multiplex relations to integrate interactive conversation, item knowl-
edge, and social influence to learn dynamic user preferences, we
present a case of conversational recommendation generated by our
framework in Figure 5. As illustrated in the figure, by integrating
the information from the interactive conversation, item knowledge,
and social information with multiplex relations from different views,

AT
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Figure 5: A case of conversation recommendation generated by
our proposed MHCPL.

MHCPL is able to effectively ask attributes and recommend user-
preferred items, reaching success in five turns. Furthermore, the
social information selected according to the interactive conversation
is helpful in learning dynamic user preferences. With the help of se-
lected social information, MHCPL could accurately select the target
item when the information from the interactive history is limited in
distinguishing user preferences towards the seventy candidate items.

7 CONCLUSION

In this work, we explore multiplex relations to integrate interactive
conversation, item knowledge, and social influence in helping learn
the dynamic user preferences for conversational recommendation.
We propose a novel hypergraph-based model, namely Multi-view
Hypergraph Contrastive Policy Learning (MHCPL), which timely
selects useful social information according to the interactive history
and builds a dynamic hypergraph with three types of multiplex rela-
tions from different views. A hierarchical hypergraph neural network
is proposed to learn user preferences by integrating information of
the graph structure and sequential modeling from the dynamic multi-
view hypergraph. Furthermore, a cross-view contrastive learning
module is proposed with two terms to maintain the inherent char-
acteristics and the correlations of user preferences from different
views. Extensive experiments on two popular benchmarks demon-
strate the superiority of our proposed method, as compared to the
state-of-the-art baselines.
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